ﻻ يوجد ملخص باللغة العربية
Attosecond science has been transforming our understanding of electron dynamics in atoms, molecules and solids. However, to date almost all of the attoscience experiments have been based on spectroscopic measurements because attosecond pulses have intrinsically very broad spectra due to the uncertainty principle and are incompatible with conventional imaging systems. Here we report an important advance towards achieving attosecond coherent diffractive imaging. Using simulated attosecond pulses, we simultaneously reconstruct the spectrum, 17 probes and 17 spectral images of extended objects from a set of ptychographic diffraction patterns. We further confirm the principle and feasibility of this method by successfully performing a ptychographic coherent diffractive imaging experiment using a light-emitting diode with a broad spectrum. We believe this work clear the way to an unexplored domain of attosecond imaging science, which could have a far-reaching impact across different disciplines.
Attosecond science promises to reveal the most fundamental electronic dynamics occurring in matter and it can develop further by meeting two linked technological goals related to high-order harmonic sources: higher photon flux (permitting to measure
The inversion of a diffraction pattern offers aberration-free diffraction-limited 3D images without the resolution and depth-of-field limitations of lens-based tomographic systems, the only limitation being radiation damage. We review our experimenta
We present the experimental reconstruction of sub-wavelength features from the far-field intensity of sparse optical objects: sparsity-based sub-wavelength imaging combined with phase-retrieval. As examples, we demonstrate the recovery of random and
Coherent diffractive imaging (CDI) has been widely applied in the physical and biological sciences using synchrotron radiation, XFELs, high harmonic generation, electrons and optical lasers. One of CDIs important applications is to probe dynamic phen
Characterizing buried layers and interfaces is critical for a host of applications in nanoscience and nano-manufacturing. Here we demonstrate non-invasive, non-destructive imaging of buried interfaces using a tabletop, extreme ultraviolet (EUV), cohe