ﻻ يوجد ملخص باللغة العربية
Adding a hard photon to the final state of a leptonic pseudoscalar-meson decay lifts the helicity suppression and can provide sensitivity to a larger set of operators in the weak effective Hamiltonian. Furthermore, radiative leptonic $B$ decays at high photon energy are well suited to constrain the first inverse moment of the $B$-meson light-cone distribution amplitude, an important parameter in the theory of nonleptonic $B$ decays. We demonstrate that the calculation of radiative leptonic decays is possible using Euclidean lattice QCD, and present preliminary numerical results for $D_s^+ to ell^+ ugamma$ and $K^- to ell^-bar{ u}gamma$.
We develop a method to compute inclusive semi-leptonic decay rate of hadrons fully non-perturbatively using lattice QCD simulations. The sum over all possible final states is achieved by a calculation of the forward-scattering matrix elements on the
We present a non-perturbative lattice calculation of the form factors which contribute to the amplitudes for the radiative decays $Pto ell bar u_ell gamma$, where $P$ is a pseudoscalar meson and $ell$ is a charged lepton. Together with the non-pertu
We present a non-perturbative calculation of the form factors which contribute to the amplitudes for the radiative decays $Pto ell bar u_ell gamma$, where $P$ is a pseudoscalar meson and $ell$ is a charged lepton. Together with the non-perturbative
We report on a two-flavour lattice QCD study of the D_s and D_s^* leptonic decays parameterized by the decay constants f_{D_s} and f_{D_s^*}. As the phenomenology in the D_s sector seems very promising in the next years with the experiments LHCb and
Radiative decays of bottomonium are revisited, focusing on contributions from higher-order relativistic effects. The leading relativistic correction to the magnetic spin-flip operator at the photon vertex is found to be particularly important. The co