ﻻ يوجد ملخص باللغة العربية
We report on a two-flavour lattice QCD study of the D_s and D_s^* leptonic decays parameterized by the decay constants f_{D_s} and f_{D_s^*}. As the phenomenology in the D_s sector seems very promising in the next years with the experiments LHCb and Belle II, it is worth putting a big effort in lattice computations regarding its non-perturbative QCD contributions. Before examining more challenging processes such as hadron-hadron transitions, a natural first step is to address some basic aspects in the context of leptonic decays, where systematic uncertainties from excited state contaminations and cut-off effects in the computation of charmed meson decay matrix elements can be investigated in a more straightforward setting.
We develop a method to compute inclusive semi-leptonic decay rate of hadrons fully non-perturbatively using lattice QCD simulations. The sum over all possible final states is achieved by a calculation of the forward-scattering matrix elements on the
We present our analysis of B physics quantities using non-perturbatively matched Heavy Quark Effective Theory (HQET) in Nf= 2 lattice QCD on the CLS ensembles. Using all-to-all propagators, HYP-smeared static quarks, and the Generalized Eigenvalue Pr
We present preliminary results on the axial form factor $G_A(Q^2)$ and the induced pseudoscalar form factor $G_P(Q^2)$ of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6 with
Adding a hard photon to the final state of a leptonic pseudoscalar-meson decay lifts the helicity suppression and can provide sensitivity to a larger set of operators in the weak effective Hamiltonian. Furthermore, radiative leptonic $B$ decays at hi
We study the deconfinement transition in two-flavour lattice QCD with dynamical overlap fermions. Our simulations have been carried out on a $16^3 times 6$ lattice at a pion mass around 500 MeV with a special HMC algorithm without any approximation s