ﻻ يوجد ملخص باللغة العربية
We investigate the solutions of black holes in $f(T)$ gravity with nonlinear power-law Maxwell field, where $T$ is the torsion scalar in teleparalelism. In particular, we introduce the Langranian with diverse dimensions in which the quadratic polynomial form of $f(T)$ couples with the nonlinear power-law Maxwell field. We explore the leverage of the nonlinear electrodynamics on the space-time behavior. It is found that these new black hole solutions tend towards those in general relativity without any limit. Furthermore, it is demonstrated that the singularity of the curvature invariant and the torsion scalar is softer than the quadratic form of the charged field equations in $f(T)$ gravity and much milder than that in the classical general relativity because of the nonlinearity of the Maxwell field. In addition, from the analyses of physical and thermodynamic quantities of the mass, charge and the Hawking temperature of black holes, it is shown that the power-law parameter affects the asymptotic behavior of the radial coordinate of the charged terms, and that a higher-order nonlinear power-law Maxwell field imparts the black holes with the local stability.
We investigate static and rotating charged spherically symmetric solutions in the framework of $f({cal R})$ gravity, allowing additionally the electromagnetic sector to depart from linearity. Applying a convenient, dual description for the electromag
We provide for the first time the growth index of linear matter fluctuations of the power law $f(T) propto (-T)^{b}$ gravity model. We find that the asymptotic form of this particular $f(T)$ model is $gamma approx frac{6}{11-6b}$ which obviously exte
We systematically study the field equations of $f(mathbb Q)$ gravity for spherically symmetric and stationary metric-affine spacetimes. Such spacetimes are described by a metric as well as a flat and torsionless affine connection. In the Symmetric Te
We study inflation in the framework of $f(T)$-gravity in the presence of a canonical scalar field. After reviewing the basic equations governing the background cosmology in $f(T)$-gravity, we turn to study the cosmological perturbations and obtain th
Gravity is attributed to the spacetime curvature in classical General Relativity (GR). But, other equivalent formulation or representations of GR, such as torsion or non-metricity have altered the perception. We consider the Weyl-type $f(Q, T)$ gravi