ترغب بنشر مسار تعليمي؟ اضغط هنا

Luminosity source in supernova ASASSN-15nx with long linear light curve

234   0   0.0 ( 0 )
 نشر من قبل Nikolai Chugai
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. N. Chugai




اسأل ChatGPT حول البحث

The available spectra of the anomalous supernova ASASSN-15nx permit us to rule out the radioactivity and circumstellar interaction as the luminosity source. I propose an alternative mechanism for the ASASSN-15nx luminosity based on the interaction of the neutron star rotating magnetosphere with the gravitationally bound material of the envelope ejected by the shock wave. In the regime of the stationary accretion the rotational frequency decreases exponentially with time, which could account for the linearity of the light curve. The modelling of the light curve at the stage of the luminosity rise in combination with the expansion velocity implies the low mass of ejecta, ~ 1 M_{odot}. The profile of the [O,I] 6300, 6364,AA doublet indicates the asphericity of the oxygen distribution, which in turn suggests the aspherical explosion.



قيم البحث

اقرأ أيضاً

We report a luminous Type II supernova, ASASSN-15nx, with a peak luminosity of M_V=-20 mag, that is between typical core-collapse supernovae and super-luminous supernovae. The post-peak optical light curves show a long, linear decline with a steep sl ope of 2.5 mag/100 days (i.e., an exponential decline in flux), through the end of observations at phase ~260 days. In contrast, the light curves of hydrogen rich supernovae (SNe II-P/L) always show breaks in their light curves at phase ~100 days, before settling onto Co56 radioactive decay tails with a decline rate of about 1 mag/100 days. The spectra of ASASSN-15nx do not exhibit the narrow emission-line features characteristic of Type IIn SNe, which can have a wide variety of light-curve shapes usually attributed to strong interactions with a dense circumstellar medium (CSM). ASASSN-15nx has a number of spectroscopic peculiarities, including a relatively weak and triangularly-shaped H-alpha emission profile with no absorption component. The physical origin of these peculiarities is unclear, but the long and linear post-peak light curve without a break suggests a single dominant powering mechanism. Decay of a large amount of Ni56 (M_Ni56 = 1.6 +/- 0.2 M_sun) can power the light curve of ASASSN-15nx, and the steep light-curve slope requires substantial gamma-ray escape from the ejecta, which is possible given a low-mass hydrogen envelope for the progenitor. Another possibility is strong CSM interactions powering the light curve, but the CSM needs to be sculpted to produce the unique light-curve shape and to avoid producing SN IIn-like narrow emission lines.
We present results of the photometric (from 3 to 509 days past explosion) and spectroscopic (up to 230 days past explosion) monitoring campaign of the He-rich Type IIb supernova (SN) 2015as. The {it (B-V)} colour evolution of SN 2015as closely resemb le those of SN 2008ax, suggesting that SN 2015as belongs to the SN IIb subgroup that does not show the early, short-duration photometric peak. The light curve of SN 2015as reaches the $B$-band maximum about 22 days after the explosion, at an absolute magnitude of -16.82 $pm$ 0.18 mag. At $sim$ 75 days after the explosion, its spectrum transitions from that of a SN II to a SN Ib. P~Cygni features due to He I lines appear at around 30 days after explosion, indicating that the progenitor of SN 2015as was partially stripped. For SN~2015as, we estimate a $^{56}$Ni mass of $sim$ 0.08 M$_{odot}$ and ejecta mass of 1.1--2.2 M$_{odot}$, which are similar to the values inferred for SN 2008ax. The quasi bolometric analytical light curve modelling suggests that the progenitor of SN 2015as has a modest mass ($sim$ 0.1 M$_{odot}$), a nearly-compact ($sim$ 0.05$times$10$^{13}$ cm) H envelope on top of a dense, compact ($sim$ 2$times$10$^{11}$ cm) and a more massive ($sim$ 1.2 M$_{odot}$) He core. The analysis of the nebular phase spectra indicates that $sim$ 0.44 M$_{odot}$ of O is ejected in the explosion. The intensity ratio of the [Ca II]/[O I] nebular lines favours either a main sequence progenitor mass of $sim$ 15 M$_{odot}$ or a Wolf Rayet star of 20 M$_{odot}$.
Optical broadband (UBVRI) photometric and low-resolution spectroscopic observations of the type II-P supernova (SN) ASASSN-14dq are presented. ASASSN-14dq exploded in a low-luminosity/metallicity host galaxy UGC 11860, the signatures of which are pre sent as weak iron lines in the photospheric phase spectra. The SN has a plateau duration of $sim,$90 d, with a plateau decline rate of 1.38 $rm mag (100 d)^{-1}$ in V-band which is higher than most type II-P SNe. ASASSN-14dq is a luminous type II-P SN with a peak $V$-band absolute magnitude of -17.7$,pm,$0.2 mag. The light curve of ASASSN-14dq indicates it to be a fast-declining type II-P SN, making it a transitional event between the type II-P and II-L SNe. The empirical relation between the steepness parameter and $rm ^{56}Ni$ mass for type II SNe was rebuilt with the help of well-sampled light curves from the literature. A $rm ^{56}Ni$ mass of $sim,$0.029 M$_{odot}$ was estimated for ASASSN-14dq, which is slightly lower than the expected $rm ^{56}Ni$ mass for a luminous type II-P SN. Using analytical light curve modelling, a progenitor radius of $rm sim3.6times10^{13}$ cm, an ejecta mass of $rm sim10 M_{odot}$ and a total energy of $rm sim,1.8times 10^{51}$ ergs was estimated for this event. The photospheric velocity evolution of ASASSN-14dq resembles a type II-P SN, but the Balmer features (H$alpha$ and H$beta$) show relatively slow velocity evolution. The high-velocity H$alpha$ feature in the plateau phase, the asymmetric H$alpha$ emission line profile in the nebular phase and the inferred outburst parameters indicate an interaction of the SN ejecta with the circumstellar material (CSM).
On 2018 Feb. 4.41, the All-Sky Automated Survey for SuperNovae (ASAS-SN) discovered ASASSN-18bt in the K2 Campaign 16 field. With a redshift of z=0.01098 and a peak apparent magnitude of B_{max}=14.31, ASASSN-18bt is the nearest and brightest SNe Ia yet observed by the Kepler spacecraft. Here we present the discovery of ASASSN-18bt, the K2 light curve, and pre-discovery data from ASAS-SN and the Asteroid Terrestrial-impact Last Alert System (ATLAS). The K2 early-time light curve has an unprecedented 30-minute cadence and photometric precision for an SN~Ia light curve, and it unambiguously shows a ~4 day nearly linear phase followed by a steeper rise. Thus, ASASSN-18bt joins a growing list of SNe Ia whose early light curves are not well described by a single power law. We show that a double-power-law model fits the data reasonably well, hinting that two physical processes must be responsible for the observed rise. However, we find that current models of the interaction with a non-degenerate companion predict an abrupt rise and cannot adequately explain the initial, slower linear phase. Instead, we find that existing, published models with shallow 56Ni are able to span the observed behavior and, with tuning, may be able to reproduce the ASASSN-18bt light curve. Regardless, more theoretical work is needed to satisfactorily model this and other early-time SNe~Ia light curves. Finally, we use Swift X-ray non-detections to constrain the presence of circumstellar material (CSM) at much larger distances and lower densities than possible with the optical light curve. For a constant density CSM these non-detections constrain rho<4.5 * 10^5 cm^-3 at a radius of 4 *10^15 cm from the progenitor star. Assuming a wind-like environment, we place mass-loss limits of Mdot< 8 * 10^-6 M_sun yr^-1 for v_w=100 km s^-1, ruling out some symbiotic progenitor systems.
124 - Subo Dong 2015
We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of M_{u,AB} = -23.5+/-0.1 and bolometric luminosity L_bol = (2.2+/-0.2)x 10^45 ergs s^-1, which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (M_K ~ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1+/- 0.2)x10^52 ergs, challenging the magnetar model for its engine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا