ترغب بنشر مسار تعليمي؟ اضغط هنا

ASASSN-15lh: A Highly Super-Luminous Supernova

124   0   0.0 ( 0 )
 نشر من قبل Subo Dong
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Subo Dong




اسأل ChatGPT حول البحث

We report the discovery of ASASSN-15lh (SN 2015L), which we interpret as the most luminous supernova yet found. At redshift z = 0.2326, ASASSN-15lh reached an absolute magnitude of M_{u,AB} = -23.5+/-0.1 and bolometric luminosity L_bol = (2.2+/-0.2)x 10^45 ergs s^-1, which is more than twice as luminous as any previously known supernova. It has several major features characteristic of the hydrogen-poor super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are currently poorly understood. In contrast to most previously known SLSNe-I that reside in star-forming dwarf galaxies, ASASSN-15lh appears to be hosted by a luminous galaxy (M_K ~ -25.5) with little star formation. In the 4 months since first detection, ASASSN-15lh radiated (1.1+/- 0.2)x10^52 ergs, challenging the magnetar model for its engine.



قيم البحث

اقرأ أيضاً

The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the fe w viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun star interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with initial period of 1-2 ms and magnetic field of 0.1-1 x 10^14 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-CSM interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.
In this paper, we investigate the energy-source models for the most luminous supernova ASASSN-15lh. We revisit the ejecta-circumstellar medium (CSM) interaction (CSI) model and the CSI plus magnetar spin-down with full gamma-ray/X-ray trapping which were adopted by cite{Chatzopoulos16} and find that the two models cannot fit the bolometric LC of ASASSN-15lh. Therefore, we consider a CSI plus magnetar model with the gamma-rays/X-rays leakage effect to eliminate the late-time excess of the theoretical LC. We find that this revised model can reproduce the bolometric LC of ASASSN-15lh. Moreover, we construct a new hybrid model (i.e., the CSI plus fallback model), and find that it can also reproduce the bolometric LC of ASASSN-15lh. Assuming that the conversion efficiency ($eta$) of fallback accretion to the outflow is typically $sim10^{-3}$, we derive that the total mass accreted is $sim3.9~M_odot$. The inferred CSM mass in the two models is rather large, indicating that the progenitor could have experienced an eruption of hydrogen-poor materials followed by an energetic core-collapse explosion leaving behind a magnetar or a black hole.
We present photometric and spectroscopic follow-up observations of the highly luminous Type Ibn supernova ASASSN-14ms, which was discovered on UT 2014-12-26.61 at $m_V sim 16.5$. With a peak absolute $V$-band magnitude brighter than $-20.5$, a peak b olometric luminosity of $1.7 times 10^{44}$ ergs s$^{-1}$, and a total radiated energy of $2.1 times 10^{50}$ ergs, ASASSN-14ms is one of the most luminous Type Ibn supernovae yet discovered. In simple models, the most likely power source for this event is a combination of the radioactive decay of $^{56}$Ni and $^{56}$Co at late times and the interaction of supernova ejecta with the progenitors circumstellar medium at early times, although we cannot rule out the possibility of a magnetar-powered light curve. The presence of a dense circumstellar medium is indicated by the intermediate-width He I features in the spectra. The faint ($m_g sim 21.6$) host galaxy SDSS J130408.52+521846.4 has an oxygen abundance below $12+log(O/H) lesssim 8.3$, a stellar mass of $M_* sim 2.6 times 10^8 M_{odot}$, and a star formation rate of $textrm{SFR} sim 0.02$ $M_{odot}$ yr$^{-1}$.
We report a luminous Type II supernova, ASASSN-15nx, with a peak luminosity of M_V=-20 mag, that is between typical core-collapse supernovae and super-luminous supernovae. The post-peak optical light curves show a long, linear decline with a steep sl ope of 2.5 mag/100 days (i.e., an exponential decline in flux), through the end of observations at phase ~260 days. In contrast, the light curves of hydrogen rich supernovae (SNe II-P/L) always show breaks in their light curves at phase ~100 days, before settling onto Co56 radioactive decay tails with a decline rate of about 1 mag/100 days. The spectra of ASASSN-15nx do not exhibit the narrow emission-line features characteristic of Type IIn SNe, which can have a wide variety of light-curve shapes usually attributed to strong interactions with a dense circumstellar medium (CSM). ASASSN-15nx has a number of spectroscopic peculiarities, including a relatively weak and triangularly-shaped H-alpha emission profile with no absorption component. The physical origin of these peculiarities is unclear, but the long and linear post-peak light curve without a break suggests a single dominant powering mechanism. Decay of a large amount of Ni56 (M_Ni56 = 1.6 +/- 0.2 M_sun) can power the light curve of ASASSN-15nx, and the steep light-curve slope requires substantial gamma-ray escape from the ejecta, which is possible given a low-mass hydrogen envelope for the progenitor. Another possibility is strong CSM interactions powering the light curve, but the CSM needs to be sculpted to produce the unique light-curve shape and to avoid producing SN IIn-like narrow emission lines.
The progenitors of astronomical transients are linked to a specific stellar population and galactic environment, and observing their host galaxies hence constrains the physical nature of the transient itself. Here, we use imaging from the Hubble Spac e Telescope, and spatially-resolved, medium resolution spectroscopy from the Very Large Telescope obtained with X-Shooter and MUSE to study the host of the very luminous transient ASASSN-15lh. The dominant stellar population at the transient site is old (around 1 to 2 Gyr), without signs of recent star-formation. We also detect emission from ionized gas, originating from three different, time-invariable, narrow components of collisionally-excited metal and Balmer lines. The ratios of emission lines in the Baldwin-Phillips-Terlevich diagnostic diagram indicate that the ionization source is a weak Active Galactic Nucleus with a black hole mass of $M_bullet = 5_{-3}^{+8}cdot10^{8} M_odot$, derived through the $M_bullet$-$sigma$ relation. The narrow line components show spatial and velocity offsets on scales of 1 kpc and 500 km/s, respectively; these offsets are best explained by gas kinematics in the narrow-line region. The location of the central component, which we argue is also the position of the supermassive black hole, aligns with that of the transient within an uncertainty of 170 pc. Using this positional coincidence as well as other similarities with the hosts of Tidal Disruption Events, we strengthen the argument that the transient emission observed as ASASSN-15lh is related to the disruption of a star around a supermassive black hole, most probably spinning with a Kerr parameter $a_bulletgtrsim0.5$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا