ﻻ يوجد ملخص باللغة العربية
We investigate some well-known problematic aspects of the single-jet inclusive cross-section, specifically its non-unitarity and the possibly related issue of apparent perturbative instability at low orders. We study and clarify their origin by introducing possible alternative weighted definitions of the observable which restore unitarity. We show that the perturbative instability of the standard definition is an accidental artefact of the smallness of the NLO $K$ factor which only manifests itself for values of the jet radius in the range $Rsim 0.3-0.6$, and that its non-unitarity is necessary in order to ensure cancellation of logs of the momentum cutoff used in the jet definition. We also show that alternative unitary definitions do not have better perturbative properties compared to the conventional non-unitary definition, while suffering from lack of cancellation of large logs.
We provide a description of the transverse momentum spectrum of single inclusive forward jets produced at the LHC, at the center-of-mass energies of 7 and 13 TeV, using the high energy factorization (HEF) framework. We subsequently study double inclu
We present new results for the jet-veto efficiency and zero-jet cross section in Higgs production through gluon fusion. We incorporate the N$^3$LO corrections to the total cross section, the NNLO corrections to the 1-jet rate, NNLL resummation for th
We compute inclusive electron-nucleus cross sections using ab initio spectral functions of $^4$He and $^{16}$O obtained within the Self Consistent Greens Function approach. The formalism adopted is based on the factorization of the spectral function
We present the predictions of a model for proton-proton total cross-section at LHC. It takes into account both hard partonic processes and soft gluon emission effects to describe the proper high energy behavior and to respect the Froissart bound.
In the spirit of Mueller-Navelet dijet production, we propose and study the inclusive production of a forward $J/psi$ and a very backward jet at the LHC as an observable to reveal high-energy resummation effects `a la BFKL. We obtain several predicti