ﻻ يوجد ملخص باللغة العربية
Iterative trajectory optimization techniques for non-linear dynamical systems are among the most powerful and sample-efficient methods of model-based reinforcement learning and approximate optimal control. By leveraging time-variant local linear-quadratic approximations of system dynamics and reward, such methods can find both a target-optimal trajectory and time-variant optimal feedback controllers. However, the local linear-quadratic assumptions are a major source of optimization bias that leads to catastrophic greedy updates, raising the issue of proper regularization. Moreover, the approximate models disregard for any physical state-action limits of the system causes further aggravation of the problem, as the optimization moves towards unreachable areas of the state-action space. In this paper, we address the issue of constrained systems in the scenario of online-fitted stochastic linear dynamics. We propose modeling state and action physical limits as probabilistic chance constraints linear in both state and action and introduce a new trajectory optimization technique that integrates these probabilistic constraints by optimizing a relaxed quadratic program. Our empirical evaluations show a significant improvement in learning robustness, which enables our approach to perform more effective updates and avoid premature convergence observed in state-of-the-art algorithms.
Continued great efforts have been dedicated towards high-quality trajectory generation based on optimization methods, however, most of them do not suitably and effectively consider the situation with moving obstacles; and more particularly, the futur
A probabilistic performance-oriented control design optimization approach is introduced for flight systems. Aiming at estimating rare-event probabilities accurately and efficiently, subset simulation is combined with surrogate modeling techniques to
This paper proposes a data-driven control framework to regulate an unknown, stochastic linear dynamical system to the solution of a (stochastic) convex optimization problem. Despite the centrality of this problem, most of the available methods critic
In this paper, we consider a Nash equilibrium seeking problem for a class of high-order multi-agent systems with unknown dynamics. Different from existing results for single integrators, we aim to steer the outputs of this class of uncertain high-ord
We study identification of linear systems with multiplicative noise from multiple trajectory data. A least-squares algorithm, based on exploratory inputs, is proposed to simultaneously estimate the parameters of the nominal system and the covariance