ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving Statistical Mechanics on Sparse Graphs with Feedback Set Variational Autoregressive Networks

81   0   0.0 ( 0 )
 نشر من قبل Feng Pan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for solving statistical mechanics problems defined on sparse graphs. It extracts a small Feedback Vertex Set (FVS) from the sparse graph, converting the sparse system to a much smaller system with many-body and dense interactions with an effective energy on every configuration of the FVS, then learns a variational distribution parameterized using neural networks to approximate the original Boltzmann distribution. The method is able to estimate free energy, compute observables, and generate unbiased samples via direct sampling without auto-correlation. Extensive experiments show that our approach is more accurate than existing approaches for sparse spin glasses. On random graphs and real-world networks, our approach significantly outperforms the standard methods for sparse systems such as the belief-propagation algorithm; on structured sparse systems such as two-dimensional lattices our approach is significantly faster and more accurate than recently proposed variational autoregressive networks using convolution neural networks.



قيم البحث

اقرأ أيضاً

Using the replica method, we develop an analytical approach to compute the characteristic function for the probability $mathcal{P}_N(K,lambda)$ that a large $N times N$ adjacency matrix of sparse random graphs has $K$ eigenvalues below a threshold $l ambda$. The method allows to determine, in principle, all moments of $mathcal{P}_N(K,lambda)$, from which the typical sample to sample fluctuations can be fully characterized. For random graph models with localized eigenvectors, we show that the index variance scales linearly with $N gg 1$ for $|lambda| > 0$, with a model-dependent prefactor that can be exactly calculated. Explicit results are discussed for Erdos-Renyi and regular random graphs, both exhibiting a prefactor with a non-monotonic behavior as a function of $lambda$. These results contrast with rotationally invariant random matrices, where the index variance scales only as $ln N$, with an universal prefactor that is independent of $lambda$. Numerical diagonalization results confirm the exactness of our approach and, in addition, strongly support the Gaussian nature of the index fluctuations.
Efficient sampling of complex high-dimensional probability densities is a central task in computational science. Machine Learning techniques based on autoregressive neural networks have been recently shown to provide good approximations of probabilit y distributions of interest in physics. In this work, we propose a systematic way to remove the intrinsic bias associated with these variational approximations, combining it with Markov-chain Monte Carlo in an automatic scheme to efficiently generate cluster updates, which is particularly useful for models for which no efficient cluster update scheme is known. Our approach is based on symmetry-enforced cluster updates building on the neural-network representation of conditional probabilities. We demonstrate that such finite-cluster updates are crucial to circumvent ergodicity problems associated with global neural updates. We test our method for first- and second-order phase transitions in classical spin systems, proving in particular its viability for critical systems, or in the presence of metastable states.
151 - F. L. Metz , I. Neri , D. Bolle 2011
We derive exact equations that determine the spectra of undirected and directed sparsely connected regular graphs containing loops of arbitrary length. The implications of our results to the structural and dynamical properties of networks are discuss ed by showing how loops influence the size of the spectral gap and the propensity for synchronization. Analytical formulas for the spectrum are obtained for specific length of the loops.
94 - P. Kozlowski , M. Marsili 2003
The majority game, modelling a system of heterogeneous agents trying to behave in a similar way, is introduced and studied using methods of statistical mechanics. The stationary states of the game are given by the (local) minima of a particular Hopfi eld like hamiltonian. On the basis of a replica symmetric calculations, we draw the phase diagram, which contains the analog of a retrieval phase. The number of metastable states is estimated using the annealed approximation. The results are confronted with extensive numerical simulations.
We review the field of the glass transition, glassy dynamics and aging from a statistical mechanics perspective. We give a brief introduction to the subject and explain the main phenomenology encountered in glassy systems, with a particular emphasis on spatially heterogeneous dynamics. We review the main theoretical approaches currently available to account for these glassy phenomena, including recent developments regarding mean-field theory of liquids and glasses, novel computational tools, and connections to the jamming transition. Finally, the physics of aging and off-equilibrium dynamics exhibited by glassy materials is discussed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا