ﻻ يوجد ملخص باللغة العربية
The emergence of flat bands in twisted bilayer graphene leads to an enhancement of interaction effects, and thus to insulating and superconducting phases at low temperatures, even though the exact mechanism is still widely debated. The position and splitting of the flat bands is also very sensitive to the residual interactions. Moreover, the low energy bands of twisted graphene bilayers show a rich structure of singularities in the density of states, van Hove singularities, which can enhance further the role of interactions. We study the effect of the long-range interactions on the band structure and the van Hove singularities of the low energy bands of twisted graphene bilayers. Reasonable values of the long-range electrostatic interaction lead to a band dispersion with a significant dependence on the filling. The change of the shape and position of the bands with electronic filling implies that the van Hove singularities remain close to the Fermi energy for a broad range of fillings. This result can be described as an effective pinning of the Fermi energy at the singularity. The sensitivity of the band structure to screening by the environment may open new ways of manipulating the system.
The possibility of triggering correlated phenomena by placing a singularity of the density of states near the Fermi energy remains an intriguing avenue towards engineering the properties of quantum materials. Twisted bilayer graphene is a key materia
Extensive scanning tunnelling microscopy and spectroscopy experiments complemented by first principles and parameterized tight binding calculations provide a clear answer to the existence, origin and robustness of van Hove singularities (vHs) in twis
Electronic instabilities at the crossing of the Fermi energy with a Van Hove singularity in the density of states often lead to new phases of matter such as superconductivity, magnetism or density waves. However, in most materials this condition is d
Understanding and tuning correlated states is of great interest and significance to modern condensed matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in magic-angle twisted bilayer graphene (tBL
The low-energy electronic structure of the itinerant metamagnet Sr3Ru2O7 is investigated by angle resolved photoemission and density functional calculations. We find well-defined quasiparticle bands with resolution limited line widths and Fermi veloc