ترغب بنشر مسار تعليمي؟ اضغط هنا

A support theorem for the Hitchin fibration: the case of $GL_n$ and $K_C$

88   0   0.0 ( 0 )
 نشر من قبل Jochen Heinloth
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the supports of the perverse cohomology sheaves of the Hitchin fibration for $GL_n$ over the locus of reduced spectral curves. In contrast to the case of meromorphic Higgs fields we find additional supports at the loci of reducible spectral curves. Their contribution to the global cohomology is governed by a finite twist of Hitchin fibrations for Levi subgroups. The corresponding summands give non-trivial contributions to the cohomology of the moduli spaces for every $n geq 3$. A key ingredient is a restriction result for intersection cohomology sheaves that allows us to compare the fibration to the one defined over the versal deformations of spectral curves.



قيم البحث

اقرأ أيضاً

We prove that the direct image complex for the $D$-twisted $SL_n$ Hitchin fibration is determined by its restriction to the elliptic locus, where the spectral curves are integral. The analogous result for $GL_n$ is due to P.-H. Chaudouard and G. Laum on. Along the way, we prove that the Tate module of the relative Prym group scheme is polarizable, and we also prove $delta$-regularity results for some auxiliary weak abelian fibrations.
We prove that the perverse Leray filtration for the Hitchin morphism is locally constant in families, thus providing some evidence towards the validity of the $P=W$ conjecture due to de Cataldo, Hausel and Migliorini in non Abelian Hodge theory.
Fix integers $ggeq 3$ and $rgeq 2$, with $rgeq 3$ if $g=3$. Given a compact connected Riemann surface $X$ of genus $g$, let $MDH(X)$ denote the corresponding $text{SL}(r, {mathbb C})$ Deligne--Hitchin moduli space. We prove that the complex analytic space $MDH(X)$ determines (up to an isomorphism) the unordered pair ${X, overline{X}}$, where $overline{X}$ is the Riemann surface defined by the opposite almost complex structure on $X$.
For G = GL_2, PGL_2 and SL_2 we prove that the perverse filtration associated to the Hitchin map on the cohomology of the moduli space of twisted G-Higgs bundles on a Riemann surface C agrees with the weight filtration on the cohomology of the twiste d G character variety of C, when the cohomologies are identified via non-Abelian Hodge theory. The proof is accomplished by means of a study of the topology of the Hitchin map over the locus of integral spectral curves.
We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally planar curves, which are however allowed to be singular and reducible. We show that the cohomologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the fine compactified Jacobians of connected subcurves, via the perverse Leray filtration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا