ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural networks with motivation

141   0   0.0 ( 0 )
 نشر من قبل Sergey Shuvaev
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

How can animals behave effectively in conditions involving different motivational contexts? Here, we propose how reinforcement learning neural networks can learn optimal behavior for dynamically changing motivational salience vectors. First, we show that Q-learning neural networks with motivation can navigate in environment with dynamic rewards. Second, we show that such networks can learn complex behaviors simultaneously directed towards several goals distributed in an environment. Finally, we show that in Pavlovian conditioning task, the responses of the neurons in our model resemble the firing patterns of neurons in the ventral pallidum (VP), a basal ganglia structure involved in motivated behaviors. We show that, similarly to real neurons, recurrent networks with motivation are composed of two oppositely-tuned classes of neurons, responding to positive and negative rewards. Our model generates predictions for the VP connectivity. We conclude that networks with motivation can rapidly adapt their behavior to varying conditions without changes in synaptic strength when expected reward is modulated by motivation. Such networks may also provide a mechanism for how hierarchical reinforcement learning is implemented in the brain.



قيم البحث

اقرأ أيضاً

Multimodal brain networks characterize complex connectivities among different brain regions from both structural and functional aspects and provide a new means for mental disease analysis. Recently, Graph Neural Networks (GNNs) have become a de facto model for analyzing graph-structured data. However, how to employ GNNs to extract effective representations from brain networks in multiple modalities remains rarely explored. Moreover, as brain networks provide no initial node features, how to design informative node attributes and leverage edge weights for GNNs to learn is left unsolved. To this end, we develop a novel multiview GNN for multimodal brain networks. In particular, we regard each modality as a view for brain networks and employ contrastive learning for multimodal fusion. Then, we propose a GNN model which takes advantage of the message passing scheme by propagating messages based on degree statistics and brain region connectivities. Extensive experiments on two real-world disease datasets (HIV and Bipolar) demonstrate the effectiveness of our proposed method over state-of-the-art baselines.
117 - Gonc{c}alo Mestre 2021
Given the inner complexity of the human nervous system, insight into the dynamics of brain activity can be gained from understanding smaller and simpler organisms, such as the nematode C. Elegans. The behavioural and structural biology of these organ isms is well-known, making them prime candidates for benchmarking modelling and simulation techniques. In these complex neuronal collections, classical, white-box modelling techniques based on intrinsic structural or behavioural information are either unable to capture the profound nonlinearities of the neuronal response to different stimuli or generate extremely complex models, which are computationally intractable. In this paper we show how the nervous system of C. Elegans can be modelled and simulated with data-driven models using different neural network architectures. Specifically, we target the use of state of the art recurrent neural networks architectures such as LSTMs and GRUs and compare these architectures in terms of their properties and their accuracy as well as the complexity of the resulting models. We show that GRU models with a hidden layer size of 4 units are able to accurately reproduce with high accuracy the systems response to very different stimuli.
The abundant recurrent horizontal and feedback connections in the primate visual cortex are thought to play an important role in bringing global and semantic contextual information to early visual areas during perceptual inference, helping to resolve local ambiguity and fill in missing details. In this study, we find that introducing feedback loops and horizontal recurrent connections to a deep convolution neural network (VGG16) allows the network to become more robust against noise and occlusion during inference, even in the initial feedforward pass. This suggests that recurrent feedback and contextual modulation transform the feedforward representations of the network in a meaningful and interesting way. We study the population codes of neurons in the network, before and after learning with feedback, and find that learning with feedback yielded an increase in discriminability (measured by d-prime) between the different object classes in the population codes of the neurons in the feedforward path, even at the earliest layer that receives feedback. We find that recurrent feedback, by injecting top-down semantic meaning to the population activities, helps the network learn better feedforward paths to robustly map noisy image patches to the latent representations corresponding to important visual concepts of each object class, resulting in greater robustness of the network against noises and occlusion as well as better fine-grained recognition.
Neural population activity is theorized to reflect an underlying dynamical structure. This structure can be accurately captured using state space models with explicit dynamics, such as those based on recurrent neural networks (RNNs). However, using r ecurrence to explicitly model dynamics necessitates sequential processing of data, slowing real-time applications such as brain-computer interfaces. Here we introduce the Neural Data Transformer (NDT), a non-recurrent alternative. We test the NDTs ability to capture autonomous dynamical systems by applying it to synthetic datasets with known dynamics and data from monkey motor cortex during a reaching task well-modeled by RNNs. The NDT models these datasets as well as state-of-the-art recurrent models. Further, its non-recurrence enables 3.9ms inference, well within the loop time of real-time applications and more than 6 times faster than recurrent baselines on the monkey reaching dataset. These results suggest that an explicit dynamics model is not necessary to model autonomous neural population dynamics. Code: https://github.com/snel-repo/neural-data-transformers
Conventionally, information is represented by spike rates in the neural system. Here, we consider the ability of temporally modulated activities in neuronal networks to carry information extra to spike rates. These temporal modulations, commonly know n as population spikes, are due to the presence of synaptic depression in a neuronal network model. We discuss its relevance to an experiment on transparent motions in macaque monkeys by Treue et al. in 2000. They found that if the moving directions of objects are too close, the firing rate profile will be very similar to that with one direction. As the difference in the moving directions of objects is large enough, the neuronal system would respond in such a way that the network enhances the resolution in the moving directions of the objects. In this paper, we propose that this behavior can be reproduced by neural networks with dynamical synapses when there are multiple external inputs. We will demonstrate how resolution enhancement can be achieved, and discuss the conditions under which temporally modulated activities are able to enhance information processing performances in general.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا