ﻻ يوجد ملخص باللغة العربية
Estimates for elliptic flow in collisions of polarized light nuclei with spin $jge1$ with a heavy nucleus are presented. In such collisions the azimuthal symmetry is broken via polarization of the wave function of the light nucleus, resulting in nonzero one-body elliptic flow coefficient evaluated relative to the polarization axis. Our estimates involve experimentally well known features of light nuclei, such as their quadrupole moment and the charge radius, yielding the one-body elliptic flow coefficient in the range from 1% for collisions with the deuteron to 5% for for collisions with $^{10}$B nucleus. Prospects of addressing the issue in the upcoming fixed-target experiment at the Large Hadron Collider are discussed.
Predictions are made for elliptic flow in collisions of polarized deuterons with a heavy nucleus. It is shown that the eccentricity of the initial fireball, evaluated with respect to the deuteron polarization axis perpendicular to the beam direction,
In high energy heavy ion collisions, the directed flow of particles is conventionally measured with respect to that of the projectile spectators, which is defined as positive $x$ direction. But it is not known if the spectators deflect in the outward
We explore possible observable signatures of $alpha$ clustering of light nuclei in ultra-relativistic nuclear collisions involving ${}^{7,9}$Be, ${}^{12}$C, and ${}^{16}$O. The clustering leads to specific spatial correlations of the nucleon distribu
A systematic analysis of correlations between different orders of $p_T$-differential flow is presented, including mode coupling effects in flow vectors, correlations between flow angles (a.k.a. event-plane correlations), and correlations between flow
We calculate the transverse momentum and invariant mass dependence of elliptic flow of thermal dileptons for Au+Au collisions at the Relativistic Heavy Ion Collider. The system is described using hydrodynamics, with the assumption of formation of a t