ترغب بنشر مسار تعليمي؟ اضغط هنا

The FRB 121102 host is atypical among nearby FRBs

63   0   0.0 ( 0 )
 نشر من قبل Ye Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ye Li




اسأل ChatGPT حول البحث

We search for host galaxy candidates of nearby fast radio bursts (FRBs), FRB 180729.J1316+55, FRB 171020, FRB 171213, FRB 180810.J1159+83, and FRB 180814.J0422+73 (the second repeating FRB). We compare the absolute magnitudes and the expected host dispersion measure $rm DM_{host}$ of these candidates with that of the first repeating FRB, FRB 121102, as well as those of long gamma ray bursts (LGRBs) and superluminous supernovae (SLSNe), the proposed progenitor systems of FRB 121102. We find that while the FRB 121102 host is consistent with those of LGRBs and SLSNe, the nearby FRB host candidates, at least for FRB 180729.J1316+55, FRB 171020, and FRB180814.J0422+73, either have a smaller $rm DM_{host}$ or are fainter than FRB121102 host, as well as the hosts of LGRBs and SLSNe. In order to avoid the uncertainty in estimating $rm DM_{host}$ due to the line-of-sight effect, we propose a galaxy-group-based method to estimate the electron density in the inter-galactic regions, and hence, $rm DM_{IGM}$. The result strengthens our conclusion. We conclude that the host galaxy of FRB 121102 is atypical, and LGRBs and SLSNe are likely not the progenitor systems of at least most nearby FRB sources. {The recently reported two FRB hosts differ from the host of FRB 121102 and also the host candidates suggested in this paper. This is consistent with the conclusion of our paper and suggests that the FRB hosts are very diverse. }



قيم البحث

اقرأ أيضاً

86 - C.G. Bassa 2017
We present optical, near- and mid-infrared imaging of the host galaxy of FRB 121102 with the Gemini North telescope, the Hubble Space Telescope and the Spitzer Space Telescope. The FRB 121102 host galaxy is resolved, revealing a bright star forming r egion located in the outskirts of the irregular, low-metallicity dwarf galaxy. The star forming region has a half-light radius of 0.68 kpc (0.20 arcsec), encompassing the projected location of the compact (<0.7 pc), persistent radio source that is associated with FRB 121102. The half-light diameter of the dwarf galaxy is 5 to 7 kpc, and broadband spectral energy distribution fitting indicates that it has a total stellar mass of M*~10^8 Msun. The metallicity of the host galaxy is low, 12+log10 ([O/H])=8.0+-0.1. The properties of the host galaxy of FRB 121102 are comparable to those of extreme emission line galaxies, also known to host hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts. The projected location of FRB 121102 within the star forming region supports the proposed connection of FRBs with newly born neutron stars or magnetars.
We present SMA and NOEMA observations of the host galaxy of FRB 121102 in the CO 3-2 and 1-0 transitions, respectively. We do not detect emission from either transition. We set $3sigma$ upper limits to the CO luminosity $L_{CO} < 2.5 times 10^7,{rm K ,km,s}^{-1} {, rm pc^{-2}}$ for CO 3-2 and $L_{CO} < 2.3 times 10^9, {rm K,km,s}^{-1} {, rm pc^{-2}}$ for CO 1-0. For Milky-Way-like star formation properties, we set a $3sigma$ upper limit on the $H_2$ mass of $2.5 times 10^8 rm M_{odot}$, slightly less than the predictions for the $H_2$ mass based on the star formation rate. The true constraint on the $H_2$ mass may be significantly higher, however, because of the reduction in CO luminosity that is common forlow-metallicity dwarf galaxies like the FRB host galaxy. These results demonstrate the challenge of identifying the nature of FRB progenitors through study of the host galaxy molecular gas. We also place a limit of 42 $mu$Jy ($3sigma$) on the continuum flux density of the persistent radio source at 97 GHz, consistent with a power-law extrapolation of the low frequency spectrum, which may arise from an AGN or other nonthermal source.
137 - C. J. Law 2017
We present results of the coordinated observing campaign that made the first subarcsecond localization of a Fast Radio Burst, FRB 121102. During this campaign, we made the first simultaneous detection of an FRB burst by multiple telescopes: the VLA a t 3 GHz and the Arecibo Observatory at 1.4 GHz. Of the nine bursts detected by the Very Large Array at 3 GHz, four had simultaneous observing coverage at other observatories. We use multi-observatory constraints and modeling of bursts seen only at 3 GHz to confirm earlier results showing that burst spectra are not well modeled by a power law. We find that burst spectra are characterized by a ~500 MHz envelope and apparent radio energy as high as $10^{40}$ erg. We measure significant changes in the apparent dispersion between bursts that can be attributed to frequency-dependent profiles or some other intrinsic burst structure that adds a systematic error to the estimate of DM by up to 1%. We use FRB 121102 as a prototype of the FRB class to estimate a volumetric birth rate of FRB sources $R_{FRB} approx 5x10^{-5}/N_r$ Mpc$^{-3}$ yr$^{-1}$, where $N_r$ is the number of bursts per source over its lifetime. This rate is broadly consistent with models of FRBs from young pulsars or magnetars born in superluminous supernovae or long gamma-ray bursts, if the typical FRB repeats on the order of thousands of times during its lifetime.
The discovery that at least some Fast Radio Bursts (FRBs) repeat has ruled out cataclysmic events as the progenitors of these particular bursts. FRB~121102 is the most well-studied repeating FRB but despite extensive monitoring of the source, no unde rlying pattern in the repetition has previously been identified. Here, we present the results from a radio monitoring campaign of FRB~121102 using the 76-m Lovell telescope. Using the pulses detected in the Lovell data along with pulses from the literature, we report a detection of periodic behaviour of the source over the span of five years of data. We predict that the source is currently `off and that it should turn `on for the approximate MJD range $59002-59089$ (2020-06-02 to 2020-08-28). This result, along with the recent detection of periodicity from another repeating FRB, highlights the need for long-term monitoring of repeating FRBs at a high cadence. Using simulations, we show that one needs at least 100 hours of telescope time to follow-up repeating FRBs at a cadence of 0.5--3 days to detect periodicities in the range of 10--150 days. If the period is real, it shows that repeating FRBs can have a large range in their activity periods that might be difficult to reconcile with neutron star precession models.
In this paper, we present statistics of soft gamma repeater (SGR) bursts from SGR J1550-5418, SGR 1806-20 and SGR 1900+14 by adding new bursts from K{i}rm{i}z{i}bayrak et al. (2017) detected with the Rossi X-ray Timing Explorer (RXTE). We find that t he fluence distributions of magnetar bursts are well described by power-law functions with indices 1.84, 1.68, and 1.65 for SGR J1550-5418, SGR 1806-20 and SGR 1900+14, respectively. The duration distributions of magnetar bursts also show power-law forms. Meanwhile, the waiting time distribution can be described by a non-stationary Poisson process with an exponentially growing occurrence rate. These distributive features indicate that magnetar bursts can be regarded as a self-organizing critical process. We also compare these distributions with the repeating FRB 121102. The statistical properties of repeating FRB 121102 are similar with magentar bursts, combing with the large required magnetic filed ($Bgeq 10^{14}$G) of neutron star for FRB 121102, which indicates that the central engine of FRB 121102 may be a magnetar.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا