ﻻ يوجد ملخص باللغة العربية
In recent years, there are many attempts to understand popular heuristics. An example of such a heuristic algorithm is the ID3 algorithm for learning decision trees. This algorithm is commonly used in practice, but there are very few theoretical works studying its behavior. In this paper, we analyze the ID3 algorithm, when the target function is a $k$-Junta, a function that depends on $k$ out of $n$ variables of the input. We prove that when $k = log n$, the ID3 algorithm learns in polynomial time $k$-Juntas, in the smoothed analysis model of Kalai & Teng. That is, we show a learnability result when the observed distribution is a noisy variant of the original distribution.
We consider the problem of PAC-learning decision trees, i.e., learning a decision tree over the n-dimensional hypercube from independent random labeled examples. Despite significant effort, no polynomial-time algorithm is known for learning polynomia
Since its inception in the 1980s, ID3 has become one of the most successful and widely used algorithms for learning decision trees. However, its theoretical properties remain poorly understood. In this work, we introduce a novel metric of a decision
We propose $tt RandUCB$, a bandit strategy that builds on theoretically derived confidence intervals similar to upper confidence bound (UCB) algorithms, but akin to Thompson sampling (TS), it uses randomization to trade off exploration and exploitati
The Gaussian-smoothed optimal transport (GOT) framework, recently proposed by Goldfeld et al., scales to high dimensions in estimation and provides an alternative to entropy regularization. This paper provides convergence guarantees for estimating th
A recent technique of randomized smoothing has shown that the worst-case (adversarial) $ell_2$-robustness can be transformed into the average-case Gaussian-robustness by smoothing a classifier, i.e., by considering the averaged prediction over Gaussi