ﻻ يوجد ملخص باللغة العربية
This work considers unmanned aerial vehicle (UAV) networks for collecting data covertly from ground users. The full-duplex UAV intends to gather critical information from a scheduled user (SU) through wireless communication and generate artificial noise (AN) with random transmit power in order to ensure a negligible probability of the SUs transmission being detected by the unscheduled users (USUs). To enhance the system performance, we jointly design the UAVs trajectory and its maximum AN transmit power together with the user scheduling strategy subject to practical constraints, e.g., a covertness constraint, which is explicitly determined by analyzing each USUs detection performance, and a binary constraint induced by user scheduling. The formulated design problem is a mixed-integer non-convex optimization problem, which is challenging to solve directly, but tackled by our developed penalty successive convex approximation (P-SCA) scheme. An efficient UAV trajectory initialization is also presented based on the Successive Hover-and-Fly (SHAF) trajectory, which also serves as a benchmark scheme. Our examination shows the developed P-SCA scheme significantly outperforms the benchmark scheme in terms of achieving a higher max-min average transmission rate from all the SUs to the UAV.
This work, for the first time, considers confidential data collection in the context of unmanned aerial vehicle (UAV) wireless networks, where the scheduled ground sensor node (SN) intends to transmit confidential information to the UAV without being
In wireless sensor networks (WSNs), utilizing the unmanned aerial vehicle (UAV) as a mobile data collector for the ground sensor nodes (SNs) is an energy-efficient technique to prolong the network lifetime. Specifically, since the UAV can sequentiall
This letter studies an unmanned aerial vehicle-enabled wireless power transfer system within a radio-map-based robust positioning design.
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication. However, due to the limitation of their on-board power and flight time, it is challenging to obtain an opti
In this paper, we consider a scenario where an unmanned aerial vehicle (UAV) collects data from a set of sensors on a straight line. The UAV can either cruise or hover while communicating with the sensors. The objective is to minimize the UAVs total