ترغب بنشر مسار تعليمي؟ اضغط هنا

SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures

82   0   0.0 ( 0 )
 نشر من قبل Hsin-Pai Cheng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Designing neural architectures for edge devices is subject to constraints of accuracy, inference latency, and computational cost. Traditionally, researchers manually craft deep neural networks to meet the needs of mobile devices. Neural Architecture Search (NAS) was proposed to automate the neural architecture design without requiring extensive domain expertise and significant manual efforts. Recent works utilized NAS to design mobile models by taking into account hardware constraints and achieved state-of-the-art accuracy with fewer parameters and less computational cost measured in Multiply-accumulates (MACs). To find highly compact neural architectures, existing works relies on predefined cells and directly applying width multiplier, which may potentially limit the model flexibility, reduce the useful feature map information, and cause accuracy drop. To conquer this issue, we propose GRAM(GRAph propagation as Meta-knowledge) that adopts fine-grained (node-wise) search method and accumulates the knowledge learned in updates into a meta-graph. As a result, GRAM can enable more flexible search space and achieve higher search efficiency. Without the constraints of predefined cell or blocks, we propose a new structure-level pruning method to remove redundant operations in neural architectures. SwiftNet, which is a set of models discovered by GRAM, outperforms MobileNet-V2 by 2.15x higher accuracy density and 2.42x faster with similar accuracy. Compared with FBNet, SwiftNet reduces the search cost by 26x and achieves 2.35x higher accuracy density and 1.47x speedup while preserving similar accuracy. SwiftNetcan obtain 63.28% top-1 accuracy on ImageNet-1K with only 53M MACs and 2.07M parameters. The corresponding inference latency is only 19.09 ms on Google Pixel 1.

قيم البحث

اقرأ أيضاً

Graph neural networks (GNNs) have been successfully applied to learning representation on graphs in many relational tasks. Recently, researchers study neural architecture search (NAS) to reduce the dependence of human expertise and explore better GNN architectures, but they over-emphasize entity features and ignore latent relation information concealed in the edges. To solve this problem, we incorporate edge features into graph search space and propose Edge-featured Graph Neural Architecture Search to find the optimal GNN architecture. Specifically, we design rich entity and edge updating operations to learn high-order representations, which convey more generic message passing mechanisms. Moreover, the architecture topology in our search space allows to explore complex feature dependence of both entities and edges, which can be efficiently optimized by differentiable search strategy. Experiments at three graph tasks on six datasets show EGNAS can search better GNNs with higher performance than current state-of-the-art human-designed and searched-based GNNs.
We study how neural networks trained by gradient descent extrapolate, i.e., what they learn outside the support of the training distribution. Previous works report mixed empirical results when extrapolating with neural networks: while feedforward neu ral networks, a.k.a. multilayer perceptrons (MLPs), do not extrapolate well in certain simple tasks, Graph Neural Networks (GNNs) -- structured networks with MLP modules -- have shown some success in more complex tasks. Working towards a theoretical explanation, we identify conditions under which MLPs and GNNs extrapolate well. First, we quantify the observation that ReLU MLPs quickly converge to linear functions along any direction from the origin, which implies that ReLU MLPs do not extrapolate most nonlinear functions. But, they can provably learn a linear target function when the training distribution is sufficiently diverse. Second, in connection to analyzing the successes and limitations of GNNs, these results suggest a hypothesis for which we provide theoretical and empirical evidence: the success of GNNs in extrapolating algorithmic tasks to new data (e.g., larger graphs or edge weights) relies on encoding task-specific non-linearities in the architecture or features. Our theoretical analysis builds on a connection of over-parameterized networks to the neural tangent kernel. Empirically, our theory holds across different training settings.
114 - Xuefeng Du , Pengtao Xie 2020
In human learning, an effective learning methodology is small-group learning: a small group of students work together towards the same learning objective, where they express their understanding of a topic to their peers, compare their ideas, and help each other to trouble-shoot problems. In this paper, we aim to investigate whether this human learning method can be borrowed to train better machine learning models, by developing a novel ML framework -- small-group learning (SGL). In our framework, a group of learners (ML models) with different model architectures collaboratively help each other to learn by leveraging their complementary advantages. Specifically, each learner uses its intermediately trained model to generate a pseudo-labeled dataset and re-trains its model using pseudo-labeled datasets generated by other learners. SGL is formulated as a multi-level optimization framework consisting of three learning stages: each learner trains a model independently and uses this model to perform pseudo-labeling; each learner trains another model using datasets pseudo-labeled by other learners; learners improve their architectures by minimizing validation losses. An efficient algorithm is developed to solve the multi-level optimization problem. We apply SGL for neural architecture search. Results on CIFAR-100, CIFAR-10, and ImageNet demonstrate the effectiveness of our method.
Learning through tests is a broadly used methodology in human learning and shows great effectiveness in improving learning outcome: a sequence of tests are made with increasing levels of difficulty; the learner takes these tests to identify his/her w eak points in learning and continuously addresses these weak points to successfully pass these tests. We are interested in investigating whether this powerful learning technique can be borrowed from humans to improve the learning abilities of machines. We propose a novel learning approach called learning by passing tests (LPT). In our approach, a tester model creates increasingly more-difficult tests to evaluate a learner model. The learner tries to continuously improve its learning ability so that it can successfully pass however difficult tests created by the tester. We propose a multi-level optimization framework to formulate LPT, where the tester learns to create difficult and meaningful tests and the learner learns to pass these tests. We develop an efficient algorithm to solve the LPT problem. Our method is applied for neural architecture search and achieves significant improvement over state-of-the-art baselines on CIFAR-100, CIFAR-10, and ImageNet.
Graph Neural Networks (GNNs), a generalization of deep neural networks on graph data have been widely used in various domains, ranging from drug discovery to recommender systems. However, GNNs on such applications are limited when there are few avail able samples. Meta-learning has been an important framework to address the lack of samples in machine learning, and in recent years, researchers have started to apply meta-learning to GNNs. In this work, we provide a comprehensive survey of different meta-learning approaches involving GNNs on various graph problems showing the power of using these two approaches together. We categorize the literature based on proposed architectures, shared representations, and applications. Finally, we discuss several exciting future research directions and open problems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا