ﻻ يوجد ملخص باللغة العربية
The discovery of topological quantum materials represents a striking innovation in modern condensed matter physics with remarkable fundamental and technological implications. Their classification has been recently extended to topological Weyl semimetals, i.e., solid state systems which exhibit the elusive Weyl fermions as low-energy excitations. Here we show that the Nernst effect can be exploited as a sensitive probe for determining key parameters of the Weyl physics, applying it to the non-collinear antiferromagnet Mn$_3$Ge. This compound exhibits anomalous thermoelectric transport due to enhanced Berry curvature from Weyl points located extremely close to the Fermi level. We establish from our data a direct measure of the Berry curvature at the Fermi level and, using a minimal model of a Weyl semimetal, extract for the first time the Weyl point energy and their distance in momentum-space.
We present the detailed inelastic neutron scattering measurements of the noncollinear antiferromagnet Mn$_3$Ge. Time-of-flight and triple-axis spectroscopy experiments were conducted at the temperature of 6~K, well below the high magnetic ordering te
The quest for nonmagnetic Weyl semimetals with high tunability of phase has remained a demanding challenge. As the symmetry breaking control parameter, the ferroelectric order can be steered to turn on/off the Weyl semimetals phase, adjust the band s
We have used spherical neutron polarimetry to investigate the magnetic structure of the Mn spins in the hexagonal semimetal Mn$_3$Ge, which exhibits a large intrinsic anomalous Hall effect. Our analysis of the polarimetric data finds a strong prefere
We present a study of electric, thermal and thermoelectric response in noncollinear antiferromagnet Mn$_{3}$Sn, which hosts a large Anomalous Hall Effect (AHE). Berry curvature generates off-diagonal thermal(Righi-Leduc) and thermoelectric(Nernst) si
It is well established that the anomalous Hall effect that a ferromagnet displays scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. Here we show that the non-collinear