ﻻ يوجد ملخص باللغة العربية
A conditional random field (CRF) model for cloud detection in ground based sky images is presented. We show that very high cloud detection accuracy can be achieved by combining a discriminative classifier and a higher order clique potential in a CRF framework. The image is first divided into homogeneous regions using a mean shift clustering algorithm and then a CRF model is defined over these regions. The various parameters involved are estimated using training data and the inference is performed using Iterated Conditional Modes (ICM) algorithm. We demonstrate how taking spatial context into account can boost the accuracy. We present qualitative and quantitative results to prove the superior performance of this framework in comparison with other state of the art methods applied for cloud detection.
Object retrieval and reconstruction from very high resolution (VHR) synthetic aperture radar (SAR) images are of great importance for urban SAR applications, yet highly challenging owing to the complexity of SAR data. This paper addresses the issue o
Diabetes foot ulceration (DFU) and amputation are a cause of significant morbidity. The prevention of DFU may be achieved by the identification of patients at risk of DFU and the institution of preventative measures through education and offloading.
Oversight in medical images is a crucial problem, and timely reporting of medical images is desired. Therefore, an all-purpose anomaly detection method that can detect virtually all types of lesions/diseases in a given image is strongly desired. Howe
Purpose: To develop a Breast Imaging Reporting and Data System (BI-RADS) breast density deep learning (DL) model in a multi-site setting for synthetic two-dimensional mammography (SM) images derived from digital breast tomosynthesis exams using full-
Classification of malignancy for breast cancer and other cancer types is usually tackled as an object detection problem: Individual lesions are first localized and then classified with respect to malignancy. However, the drawback of this approach is