ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-Shot Entity Linking by Reading Entity Descriptions

116   0   0.0 ( 0 )
 نشر من قبل Lajanugen Logeswaran
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the zero-shot entity linking task, where mentions must be linked to unseen entities without in-domain labeled data. The goal is to enable robust transfer to highly specialized domains, and so no metadata or alias tables are assumed. In this setting, entities are only identified by text descriptions, and models must rely strictly on language understanding to resolve the new entities. First, we show that strong reading comprehension models pre-trained on large unlabeled data can be used to generalize to unseen entities. Second, we propose a simple and effective adaptive pre-training strategy, which we term domain-adaptive pre-training (DAP), to address the domain shift problem associated with linking unseen entities in a new domain. We present experiments on a new dataset that we construct for this task and show that DAP improves over strong pre-training baselines, including BERT. The data and code are available at https://github.com/lajanugen/zeshel.



قيم البحث

اقرأ أيضاً

Entity linking -- the task of identifying references in free text to relevant knowledge base representations -- often focuses on single languages. We consider multilingual entity linking, where a single model is trained to link references to same-lan guage knowledge bases in several languages. We propose a neural ranker architecture, which leverages multilingual transformer representations of text to be easily applied to a multilingual setting. We then explore how a neural ranker trained in one language (e.g. English) transfers to an unseen language (e.g. Chinese), and find that while there is a consistent but not large drop in performance. How can this drop in performance be alleviated? We explore adding an adversarial objective to force our model to learn language-invariant representations. We find that using this approach improves recall in several datasets, often matching the in-language performance, thus alleviating some of the performance loss occurring from zero-shot transfer.
Cross-language entity linking grounds mentions in multiple languages to a single-language knowledge base. We propose a neural ranking architecture for this task that uses multilingual BERT representations of the mention and the context in a neural ne twork. We find that the multilingual ability of BERT leads to robust performance in monolingual and multilingual settings. Furthermore, we explore zero-shot language transfer and find surprisingly robust performance. We investigate the zero-shot degradation and find that it can be partially mitigated by a proposed auxiliary training objective, but that the remaining error can best be attributed to domain shift rather than language transfer.
This paper considers the problem of zero-shot entity linking, in which a link in the test time may not present in training. Following the prevailing BERT-based research efforts, we find a simple yet effective way is to expand the long-range sequence modeling. Unlike many previous methods, our method does not require expensive pre-training of BERT with long position embedding. Instead, we propose an efficient position embeddings initialization method called Embedding-repeat, which initializes larger position embeddings based on BERT-Base. On Wikias zero-shot EL dataset, our method improves the SOTA from 76.06% to 79.08%, and for its long data, the corresponding improvement is from 74.57% to 82.14%. Our experiments suggest the effectiveness of long-range sequence modeling without retraining the BERT model.
Existing state of the art neural entity linking models employ attention-based bag-of-words context model and pre-trained entity embeddings bootstrapped from word embeddings to assess topic level context compatibility. However, the latent entity type information in the immediate context of the mention is neglected, which causes the models often link mentions to incorrect entities with incorrect type. To tackle this problem, we propose to inject latent entity type information into the entity embeddings based on pre-trained BERT. In addition, we integrate a BERT-based entity similarity score into the local context model of a state-of-the-art model to better capture latent entity type information. Our model significantly outperforms the state-of-the-art entity linking models on standard benchmark (AIDA-CoNLL). Detailed experiment analysis demonstrates that our model corrects most of the type errors produced by the direct baseline.
We introduce and make publicly available an entity linking dataset from Reddit that contains 17,316 linked entities, each annotated by three human annotators and then grouped into Gold, Silver, and Bronze to indicate inter-annotator agreement. We ana lyze the different errors and disagreements made by annotators and suggest three types of corrections to the raw data. Finally, we tested existing entity linking models that are trained and tuned on text from non-social media datasets. We find that, although these existing entity linking models perform very well on their original datasets, they perform poorly on this social media dataset. We also show that the majority of these errors can be attributed to poor performance on the mention detection subtask. These results indicate the need for better entity linking models that can be applied to the enormous amount of social media text.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا