ﻻ يوجد ملخص باللغة العربية
We have studied spin-orbit (SO) field in Ni$_{80}$Fe$_{20}$(Py)/W/Pt trilayer by means of spin-torque ferromagnetic resonance, and demonstrated that the W/Pt interface generates an extra SO field acting on the Py layer. This unprecedented field originates from the following three processes, 1) spin accumulation at W/Pt interface via the Rashba-Edelstein effect, 2) diffusive spin transport in the W layer, and 3) spin absorption into the Py layer through accumulation at the Py/W interface. Our result means that we can create extra SO field away from the ferromagnet/ metal interface and control its strength by a combination of two different metals.
Rashba effect describes how electrons moving in an electric field experience a momentum dependent magnetic field that couples to the electron angular momentum (spin). This physical phenomenon permits the generation of spin polarization from charge cu
We examine the bound-state and free-state contributions to the density of states in a three-dimensional electron gas with a two-dimensional interface with Rashba spin-orbit coupling. Confinement of electrons to the interface is achieved through the i
The electronic and optoelectronic properties of two dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities
It is well known that a current driven through a two-dimensional electron gas with Rashba spin-orbit coupling induces a spin polarization in the perpendicular direction (Edelstein effect). This phenomenon has been extensively studied in the linear re
We show theoretically that conversion between spin and charge by spin-orbit interaction in metals occurs even in a non-local setup where magnetization and spin-orbit interaction are spatially separated if electron diffusion is taken into account. Cal