ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-local Spin-charge Conversion via Rashba Spin-Orbit Interaction

150   0   0.0 ( 0 )
 نشر من قبل Junji Fujimoto
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show theoretically that conversion between spin and charge by spin-orbit interaction in metals occurs even in a non-local setup where magnetization and spin-orbit interaction are spatially separated if electron diffusion is taken into account. Calculation is carried out for the Rashba spin-orbit interaction treating the coupling with a ferromagnet perturbatively. The results indicate the validity of the concept of effective spin gauge field (spin motive force) in the non-local configuration. The inverse Rashba-Edelstein effect observed for a trilayer of a ferromagnet, a normal metal and a heavy metal can be explained in terms of the non-local effective spin gauge field.



قيم البحث

اقرأ أيضاً

At interfaces with inversion symmetry breaking, Rashba effect couples the motion of electrons to their spin; as a result, spin-charge interconversion mechanism can occur. These interconversion mechanisms commonly exploit Rashba spin splitting at the Fermi level by spin pumping or spin torque ferromagnetic resonance. Here, we report evidence of significant photoinduced spin to charge conversion via Rashba spin splitting in an unoccupied state above the Fermi level at the Cu(111)/$alpha$-Bi$_{2}$O$_{3}$ interface. We predict an average Rashba coefficient of $1.72times 10^{-10}eV.m$ at 1.98 eV above the Fermi level, by fully relativistic first-principles analysis of the interfacial electronic structure with spin orbit interaction. We find agreement with our observation of helicity dependent photoinduced spin to charge conversion excited at 1.96 eV at room temperature, with spin current generation of $J_{s}=10^{6}A/m^{2}$. The present letter shows evidence of efficient spin-charge conversion exploiting Rashba spin splitting at excited states, harvesting light energy without magnetic materials or external magnetic fields.
We show here theoretically and experimentally that a Rashba-split electron state inside a ferromagnet can efficiently convert a dynamical spin accumulation into an electrical voltage. The effect is understood to stem from the Rashba splitting but wit h a symmetry linked to the magnetization direction. It is experimentally measured by spin pumping in a CoFeB/MgO structure where it is found to be as efficient as the inverse spin Hall effect at play when Pt replaces MgO, with the extra advantage of not affecting the damping in the ferromagnet.
We study the local equilibrium properties of two-dimensional electron gases at high magnetic fields in the presence of random smooth electrostatic disorder, Rashba spin-orbit coupling, and the Zeeman interaction. Using a systematic magnetic length ($ l_B$) expansion within a Greens function framework we derive quantum functionals for the local spin-resolved particle and current densities which can be useful for future studies combining disorder and mean-field electron-electron interaction in the quantum Hall regime. We point out that the spin polarization presents a peculiar spatial dependence which can be used to determine the strength of the Rashba coupling by local probes. The spatial structure of the current density, consisting of both compressible and incompressible contributions, also essentially reflects the effects of Rashba spin-orbit interaction on the energy spectrum. We show that in the semiclassical limit $l_B rightarrow 0$ the local Hall conductivity remains, however, still quantized in units of $e^2/h$ for any finite strength of the spin-orbit interaction. In contrast, it becomes half-integer quantized when the latter is infinite, a situation which corresponds to a disordered topological insulator surface consisting of a single Dirac cone. Finally, we argue how to define at high magnetic fields a spin Hall conductivity related to a dissipationless angular momentum flow, which is characterized by a sequence of plateaus as a function of the inverse magnetic field (thus free of resonances).
Using response theory, we calculate the charge-current vortex generated by spin pumping at a point-like contact in a system with Rashba spin-orbit coupling. We discuss the spatial profile of the current density for finite temperature and for the zero -temperature limit. The main observation is that the Rashba spin precession leads to a charge current that oscillates as a function of the distance from the spin-pumping source, which is confirmed by numerical simulations. In our calculations, we consider a Rashba model on a square lattice, for which we first review the basic properties related to charge and spin transport. In particular, we define the charge- and spin-current operators for the tight-binding Hamiltonian as the currents coupled linearly with the U(1) and SU(2) gauge potentials, respectively. By analogy to the continuum model, the spin-orbit-coupling Hamiltonian on the lattice is then introduced as the generator of the spin current.
The interplay between spin, charge, and orbital degrees of freedom has led to the development of spintronic devices like spin-torque oscillators, spin-logic devices, and spin-transfer torque magnetic random-access memories. In this development spin p umping, the process where pure spin-currents are generated from magnetisation precession, has proved to be a powerful method for probing spin physics and magnetisation dynamics. The effect originates from direct conversion of low energy quantised spin-waves in the magnet, known as magnons, into a flow of spins from the precessing magnet to adjacent normal metal leads. The spin-pumping phenomenon represents a convenient way to electrically detect magnetisation dynamics, however, precessing magnets have been limited so far to pump pure spin currents, which require a secondary spin-charge conversion element such as heavy metals with large spin Hall angle or multi-layer layouts to be detectable. Here, we report the experimental observation of charge pumping in which a precessing ferromagnet pumps a charge current, demonstrating direct conversion of magnons into high-frequency currents via the relativistic spin-orbit interaction. The generated electric current, differently from spin currents generated by spin-pumping, can be directly detected without the need of any additional spin to charge conversion mechanism and amplitude and phase information about the relativistic current-driven magnetisation dynamics. The charge-pumping phenomenon is generic and gives a deeper understanding of the recently observed spin-orbit torques, of which it is the reciprocal effect and which currently attract interest for their potential in manipulating magnetic information. Furthermore, charge pumping provides a novel link between magnetism and electricity and may find application in sourcing alternating electric currents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا