ﻻ يوجد ملخص باللغة العربية
We give an online algorithm and prove novel mistake and regret bounds for online binary matrix completion with side information. The mistake bounds we prove are of the form $tilde{O}(D/gamma^2)$. The term $1/gamma^2$ is analogous to the usual margin term in SVM (perceptron) bounds. More specifically, if we assume that there is some factorization of the underlying $m times n$ matrix into $P Q^intercal$ where the rows of $P$ are interpreted as classifiers in $mathcal{R}^d$ and the rows of $Q$ as instances in $mathcal{R}^d$, then $gamma$ is the maximum (normalized) margin over all factorizations $P Q^intercal$ consistent with the observed matrix. The quasi-dimension term $D$ measures the quality of side information. In the presence of vacuous side information, $D= m+n$. However, if the side information is predictive of the underlying factorization of the matrix, then in an ideal case, $D in O(k + ell)$ where $k$ is the number of distinct row factors and $ell$ is the number of distinct column factors. We additionally provide a generalization of our algorithm to the inductive setting. In this setting, we provide an example where the side information is not directly specified in advance. For this example, the quasi-dimension $D$ is now bounded by $O(k^2 + ell^2)$.
Supervised, semi-supervised, and unsupervised learning estimate a function given input/output samples. Generalization of the learned function to unseen data can be improved by incorporating side information into learning. Side information are data th
Feature missing is a serious problem in many applications, which may lead to low quality of training data and further significantly degrade the learning performance. While feature acquisition usually involves special devices or complex process, it is
We propose orthogonal inductive matrix completion (OMIC), an interpretable approach to matrix completion based on a sum of multiple orthonormal side information terms, together with nuclear-norm regularization. The approach allows us to inject prio
In this paper, we study Contextual Unsupervised Sequential Selection (USS), a new variant of the stochastic contextual bandits problem where the loss of an arm cannot be inferred from the observed feedback. In our setup, arms are associated with fixe
Due to the insufficient measurements in the distribution system state estimation (DSSE), full observability and redundant measurements are difficult to achieve without using the pseudo measurements. The matrix completion state estimation (MCSE) combi