ﻻ يوجد ملخص باللغة العربية
Wireless sensor networks (WSN) acts as the backbone of Internet of Things (IoT) technology. In WSN, field sensing and fusion are the most commonly seen problems, which involve collecting and processing of a huge volume of spatial samples in an unknown field to reconstruct the field or extract its features. One of the major concerns is how to reduce the communication overhead and data redundancy with prescribed fusion accuracy. In this paper, an integrated communication and computation framework based on meta-learning is proposed to enable adaptive field sensing and reconstruction. It consists of a stochastic-gradient-descent (SGD) based base-learner used for the field model prediction aiming to minimize the average prediction error, and a reinforcement meta-learner aiming to optimize the sensing decision by simultaneously rewarding the error reduction with samples obtained so far and penalizing the corresponding communication cost. An adaptive sensing algorithm based on the above two-layer meta-learning framework is presented. It actively determines the next most informative sensing location, and thus considerably reduces the spatial samples and yields superior performance and robustness compared with conventional schemes. The convergence behavior of the proposed algorithm is also comprehensively analyzed and simulated. The results reveal that the proposed field sensing algorithm significantly improves the convergence rate.
This paper unveils the importance of intelligent reflecting surface (IRS) in a wireless powered sensor network (WPSN). Specifically, a multi-antenna power station (PS) employs energy beamforming to provide wireless charging for multiple Internet of T
Deep learning is driving a radical paradigm shift in wireless communications, all the way from the application layer down to the physical layer. Despite this, there is an ongoing debate as to what additional values artificial intelligence (or machine
In this paper we investigate fusion rules for distributed detection in large random clustered-wireless sensor networks (WSNs) with a three-tier hierarchy; the sensor nodes (SNs), the cluster heads (CHs) and the fusion center (FC). The CHs collect the
We study wireless power transmission by an energy source to multiple energy harvesting nodes with the aim to maximize the energy efficiency. The source transmits energy to the nodes using one of the available power levels in each time slot and the no
In this paper, the problem of dynamic spectrum sensing and aggregation is investigated in a wireless network containing N correlated channels, where these channels are occupied or vacant following an unknown joint 2-state Markov model. At each time s