ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary Conditions for Continuum Simulations of Wall-bounded Kinetic Plasmas

239   0   0.0 ( 0 )
 نشر من قبل Petr Cagas
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Continuum kinetic simulations of plasmas, where the distribution function of the species is directly discretized in phase-space, permits fully kinetic simulations without the statistical noise of particle-in-cell methods. Recent advances in numerical algorithms have made continuum kinetic simulations computationally competitive. This work presents the first continuum kinetic description of high-fidelity wall boundary conditions that utilize the readily available particle distribution function. The boundary condition is realized through a reflection function that can capture a wide range of cases from simple specular reflection to more involved first principles models. Examples with detailed discontinuous Galerkin implementation are provided for secondary electron emission using phenomenological and first-principles quantum-mechanical models. Results presented in this work demonstrate the effect of secondary electron emission on a classical plasma sheath.

قيم البحث

اقرأ أيضاً

Molecular kinetic simulations are typically used to accurately describe the tenuous regions of the upper atmospheres on planetary bodies. These simulations track the motion of particles representing real atmospheric atoms and/or molecules subject to collisions, the objects gravity, and external influences. Because particles can end up in very large ballistic orbits, upper boundary conditions (UBC) are typically used to limit the domain size thereby reducing the time for the atmosphere to reach steady-state. In the absence of a clear altitude at which all molecules are removed, such as a Hill sphere, an often used condition is to choose an altitude at which collisions become infrequent so that particles on escape trajectories are removed. The remainder are then either specularly reflected back into the simulation domain or their ballistic trajectories are calculated analytically or explicitly tracked so they eventually re-enter the domain. Here we examine the effect of the choice of the UBC on the escape rate and the structure of the atmosphere near the nominal exobase in the convenient and frequently used 1D spherically symmetric approximation. Using Callisto as the example body, we show that the commonly used specular reflection UBC can lead to significant uncertainties when simulating a species with a lifetime comparable to or longer than a dynamical time scale, such as an overestimation of escape rates and an inflated exosphere. Therefore, although specular reflection is convenient, the molecular lifetimes and bodys dynamical time scales need to be considered even when implementing the convenient 1D spherically symmetric simulations in order to accurately estimate the escape rate and the density and temperature structure in the transition regime.
New developments in the theory and numerical simulation of a recently proposed one-dimensional nonlinear time-dependent fluid model [K. Avinash, A. Bhattacharjee, and S. Hu, Phys. Rev. Lett. 90, 075001 (2003)] for void formation in dusty plasmas are presented. The model describes an initial instability caused by the ion drag, rapid nonlinear growth, and a nonlinear saturation mechanism that realizes a quasi-steady state containing a void. The earlier one-dimensional model has been extended to two and three dimensions (the latter, assuming spherical symmetry), using a more complete set of dynamical equations than was used in the earlier one-dimensional formulation. The present set of equations includes an ion continuity equation and a nonlinear ion drag operator. Qualitative features of void formation are shown to be robust with respect to different functional forms of the ion drag operator.
Multifluid simulations of plasma sheaths are increasingly used to model a wide variety of problems in plasma physics ranging from global magnetospheric flows around celestial bodies to plasma-wall interactions in thrusters and fusion devices. For mul tifluid problems, accurate boundary conditions to model an absorbing wall that resolves a classical sheath remains an open research area. This work justifies the use of vacuum boundary conditions for absorbing walls to show comparable accuracy between a multifluid sheath and lower moments of a continuum-kinetic sheath.
70 - T. Pohl , T. Pattard , J.M. Rost 2004
A kinetic approach for the evolution of ultracold neutral plasmas including interionic correlations and the treatment of ionization/excitation and recombination/deexcitation by rate equations is described in detail. To assess the reliability of the a pproximations inherent in the kinetic model, we have developed a hybrid molecular dynamics method. Comparison of the results reveals that the kinetic model describes the atomic and ionic observables of the ultracold plasma surprisingly well, confirming our earlier findings concerning the role of ion-ion correlations [Phys. Rev. A {bf 68}, 010703]. In addition, the molecular dynamics approach allows one to study the relaxation of the ionic plasma component towards thermodynamical equilibrium.
Heliospheric plasmas require multi-scale and multi-physics considerations. On one hand, MHD codes are widely used for global simulations of the solar-terrestrial environments, but do not provide the most elaborate physical description of space plasma s. Hybrid codes, on the other hand, capture important physical processes, such as electric currents and effects of finite Larmor radius, but they can be used locally only, since the limitations in available computational resources do not allow for their use throughout a global computational domain. In the present work, we present a new coupled scheme which allows to switch blocks in the block-adaptive grids from fluid MHD to hybrid simulations, without modifying the self-consistent computation of the electromagnetic fields acting on fluids (in MHD simulation) or charged ion macroparticles (in hybrid simulation). In this way, the hybrid scheme can refine the description in specified regions of interest without compromising the efficiency of the global MHD code.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا