ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic modelling and molecular dynamics simulation of ultracold neutral plasmas including ionic correlations

71   0   0.0 ( 0 )
 نشر من قبل T. Pohl
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A kinetic approach for the evolution of ultracold neutral plasmas including interionic correlations and the treatment of ionization/excitation and recombination/deexcitation by rate equations is described in detail. To assess the reliability of the approximations inherent in the kinetic model, we have developed a hybrid molecular dynamics method. Comparison of the results reveals that the kinetic model describes the atomic and ionic observables of the ultracold plasma surprisingly well, confirming our earlier findings concerning the role of ion-ion correlations [Phys. Rev. A {bf 68}, 010703]. In addition, the molecular dynamics approach allows one to study the relaxation of the ionic plasma component towards thermodynamical equilibrium.



قيم البحث

اقرأ أيضاً

Ultracold neutral plasmas, formed by photoionizing laser-cooled atoms near the ionization threshold, have electron temperatures in the 1-1000 kelvin range and ion temperatures from tens of millikelvin to a few kelvin. They represent a new frontier in the study of neutral plasmas, which traditionally deals with much hotter systems, but they also blur the boundaries of plasma, atomic, condensed matter, and low temperature physics. Modelling these plasmas challenges computational techniques and theories of non-equilibrium systems, so the field has attracted great interest from the theoretical and computational physics communities. By varying laser intensities and wavelengths it is possible to accurately set the initial plasma density and energy, and charged-particle-detection and optical diagnostics allow precise measurements for comparison with theoretical predictions. Recent experiments using optical probes demonstrated that ions in the plasma equilibrate in a strongly coupled fluid phase. Strongly coupled plasmas, in which the electrical interaction energy between charged particles exceeds the average kinetic energy, reverse the traditional energy hierarchy underlying basic plasma concepts such as Debye screening and hydrodynamics. Equilibration in this regime is of particular interest because it involves the establishment of spatial correlations between particles, and it connects to the physics of the interiors of gas-giant planets and inertial confinement fusion devices.
119 - P. Gupta , S. Laha , C. E. Simien 2007
We have used the free expansion of ultracold neutral plasmas as a time-resolved probe of electron temperature. A combination of experimental measurements of the ion expansion velocity and numerical simulations characterize the crossover from an elast ic-collision regime at low initial Gamma_e, which is dominated by adiabatic cooling of the electrons, to the regime of high Gamma_e in which inelastic processes drastically heat the electrons. We identify the time scales and relative contributions of various processes, and experimentally show the importance of radiative decay and disorder-induced electron heating for the first time in ultracold neutral plasmas.
61 - T. Pohl , T. Pattard , J.M. Rost 2004
Recent experiments with ultracold neutral plasmas show an intrinsic heating effect based on the development of spatial correlations. We investigate whether this effect can be reversed, so that imposing strong spatial correlations could in fact lead t o cooling of the ions. We find that cooling is indeed possible. It requires, however, a very precise preparation of the initial state. Quantum mechanical zero-point motion sets a lower limit for ion cooling.
86 - G. M. Gorman 2019
We introduce a combined molecular dynamics (MD) and quantum trajectories (QT) code to simulate the effects of near-resonant optical fields on state-vector evolution and particle motion in a collisional system. In contrast to collisionless systems, in which the quantum dynamics of multi-level, laser-driven particles with spontaneous emission can be described with the optical Bloch equations (OBEs), particle velocities in sufficiently collisional systems change on timescales comparable to those of the laser-induced, quantum-state dynamics. These transient velocity changes can cause the time-averaged velocity dependence of the quantum state to differ from the OBE solution. We use this multiscale code to describe laser-cooling in a strontium ultracold neutral plasma. Important phenomena described by the simulation include suppression of electromagnetically induced transparencies through rapid velocity changing collisions and thermalization between cooled and un-cooled directions for anisotropic laser cooling.
Characterizing macromolecular kinetics from molecular dynamics (MD) simulations requires a distance metric that can distinguish slowly-interconverting states. Here we build upon diffusion map theory and define a kinetic distance for irreducible Marko v processes that quantifies how slowly molecular conformations interconvert. The kinetic distance can be computed given a model that approximates the eigenvalues and eigenvectors (reaction coordinates) of the MD Markov operator. Here we employ the time-lagged independent component analysis (TICA). The TICA components can be scaled to provide a kinetic map in which the Euclidean distance corresponds to the kinetic distance. As a result, the question of how many TICA dimensions should be kept in a dimensionality reduction approach becomes obsolete, and one parameter less needs to be specified in the kinetic model construction. We demonstrate the approach using TICA and Markov state model (MSM) analyses for illustrative models, protein conformation dynamics in bovine pancreatic trypsin inhibitor and protein-inhibitor association in trypsin and benzamidine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا