ترغب بنشر مسار تعليمي؟ اضغط هنا

The Higgs width in the SMEFT

138   0   0.0 ( 0 )
 نشر من قبل Ilaria Brivio
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the total and partial inclusive Higgs widths at leading order in the Standard Model Effective Field Theory (SMEFT). We report results incorporating SMEFT corrections for two and four body Higgs decays through vector currents in this limit. The narrow width approximation is avoided and all phase space integrals are directly evaluated. We explain why the narrow width approximation fails more significantly in the SMEFT compared to the SM, despite the narrowness of the observed $rm SU(2) times U(1)$ bosons in both theories. Our results are presented in a manner that allows various input parameter schemes to be used, and they allow the inclusive branching ratios and decay widths of the Higgs to be numerically determined without a Monte Carlo generation of phase space for each Wilson coefficient value chosen.

قيم البحث

اقرأ أيضاً

The study of Higgs boson production at large transverse momentum is one of the new frontiers for the LHC Higgs physics programme. This paper considers boosted Higgs production in the Standard Model Effective Field Theory (SMEFT). We focus on the gluo n fusion and $t{bar t}H$ production processes and study the effects of three dimension-6 operators: the top Yukawa operator, the gluon-Higgs effective coupling and the chromomagnetic dipole operator of the top quark. We perform a detailed study of the sensitivity of current and future LHC data to the corresponding Wilson coefficients, consistently accounting for their renormalisation group evolution. We compare the sensitivities obtained with only linear and linear + quadratic terms in the SMEFT by using the spectrum shape and the addition of the Higgs signal yields. We also consider fits of $p_T$ spectra in models with heavy-top partners and in MSSM scenarios with a light scalar top and study the validity of the SMEFT assumptions as a function of the new-particle masses and the Higgs $p_T$ range. Finally, we extract constraints on the Wilson coefficients for gluon fusion from a simultaneous fit to the ATLAS and CMS data and compare our results with those obtained in global SMEFT analyses.
We present a global interpretation of Higgs, diboson, and top quark production and decay measurements from the LHC in the framework of the Standard Model Effective Field Theory (SMEFT) at dimension six. We constrain simultaneously 36 independent dire ctions in its parameter space, and compare the outcome of the global analysis with that from individual and two-parameter fits. Our results are obtained by means of state-of-the-art theoretical calculations for the SM and the EFT cross-sections, and account for both linear and quadratic corrections in the $1/Lambda^2$ expansion. We demonstrate how the inclusion of NLO QCD and $mathcal{O}left( Lambda^{-4}right)$ effects is instrumental to accurately map the posterior distributions associated to the fitted Wilson coefficients. We assess the interplay and complementarity between the top quark, Higgs, and diboson measurements, deploy a variety of statistical estimators to quantify the impact of each dataset in the parameter space, and carry out fits in BSM-inspired scenarios such as the top-philic model. Our results represent a stepping stone in the ongoing program of model-independent searches at the LHC from precision measurements, and pave the way towards yet more global SMEFT interpretations extended to other high-$p_T$ processes as well as to low-energy observables.
As one of the key properties of the Higgs boson, the Higgs total width is sensitive to global profile of the Higgs boson couplings, and thus new physics would modify the Higgs width. We investigate the total width in various new physics models, inclu ding various scalar extension, composite Higgs models, and fraternal twin Higgs model. Typically the Higgs width is smaller than the standard model value due to mixture with other scalar if the Higgs is elementary, or curved Higgs field space for the composite Higgs. On the other hand, except the possible invisible decay mode, the enhanced Yukawa coupling in the two Higgs doublet model or the exotic fermion embeddings in the composite Higgs, could enhance the Higgs width greatly. The precision measurement of the Higgs total width at the high-luminosity LHC can be used to discriminate certain new physics models.
We present the automation of one-loop computations in the standard-model effective field theory at dimension six. Our general implementation, dubbed SMEFT@NLO, covers all types of operators: bosonic, two- and four-fermion ones. Included ultraviolet a nd rational counterterms presently allow for fully differential predictions, possibly matched to parton shower, up to the one-loop level in the strong coupling or in four-quark operator coefficients. Exact flavor symmetries are imposed among light quark generations and an initial focus is set on top-quark interactions in the fermionic sector. We illustrate the potential of this implementation with novel loop-induced and next-to-leading-order computations relevant for top-quark, electroweak, and Higgs-boson phenomenology at the LHC and future colliders.
The increasing interest in the phenomenology of the Standard Model Effective Field Theory (SMEFT), has led to the development of a wide spectrum of public codes which implement automatically different aspects of the SMEFT for phenomenological applica tions. In order to discuss the present and future of such efforts, the SMEFT-Tools 2019 Workshop was held at the IPPP Durham on the 12th-14th June 2019. Here we collect and summarize the contents of this workshop.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا