ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlating Twitter Language with Community-Level Health Outcomes

111   0   0.0 ( 0 )
 نشر من قبل Martin Jaggi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study how language on social media is linked to diseases such as atherosclerotic heart disease (AHD), diabetes and various types of cancer. Our proposed model leverages state-of-the-art sentence embeddings, followed by a regression model and clustering, without the need of additional labelled data. It allows to predict community-level medical outcomes from language, and thereby potentially translate these to the individual level. The method is applicable to a wide range of target variables and allows us to discover known and potentially novel correlations of medical outcomes with life-style aspects and other socioeconomic risk factors.



قيم البحث

اقرأ أيضاً

Mental health challenges are thought to afflict around 10% of the global population each year, with many going untreated due to stigma and limited access to services. Here, we explore trends in words and phrases related to mental health through a col lection of 1- , 2-, and 3-grams parsed from a data stream of roughly 10% of all English tweets since 2012. We examine temporal dynamics of mental health language, finding that the popularity of the phrase mental health increased by nearly two orders of magnitude between 2012 and 2018. We observe that mentions of mental health spike annually and reliably due to mental health awareness campaigns, as well as unpredictably in response to mass shootings, celebrities dying by suicide, and popular fictional stories portraying suicide. We find that the level of positivity of messages containing mental health, while stable through the growth period, has declined recently. Finally, we use the ratio of original tweets to retweets to quantify the fraction of appearances of mental health language due to social amplification. Since 2015, mentions of mental health have become increasingly due to retweets, suggesting that stigma associated with discussion of mental health on Twitter has diminished with time.
Analysis methods which enable us to better understand the representations and functioning of neural models of language are increasingly needed as deep learning becomes the dominant approach in NLP. Here we present two methods based on Representationa l Similarity Analysis (RSA) and Tree Kernels (TK) which allow us to directly quantify how strongly the information encoded in neural activation patterns corresponds to information represented by symbolic structures such as syntax trees. We first validate our methods on the case of a simple synthetic language for arithmetic expressions with clearly defined syntax and semantics, and show that they exhibit the expected pattern of results. We then apply our methods to correlate neural representations of English sentences with their constituency parse trees.
Mental illnesses adversely affect a significant proportion of the population worldwide. However, the methods traditionally used for estimating and characterizing the prevalence of mental health conditions are time-consuming and expensive. Consequentl y, best-available estimates concerning the prevalence of mental health conditions are often years out of date. Automated approaches to supplement these survey methods with broad, aggregated information derived from social media content provides a potential means for near real-time estimates at scale. These may, in turn, provide grist for supporting, evaluating and iteratively improving upon public health programs and interventions. We propose a novel model for automated mental health status quantification that incorporates user embeddings. This builds upon recent work exploring representation learning methods that induce embeddings by leveraging social media post histories. Such embeddings capture latent characteristics of individuals (e.g., political leanings) and encode a soft notion of homophily. In this paper, we investigate whether user embeddings learned from twitter post histories encode information that correlates with mental health statuses. To this end, we estimated user embeddings for a set of users known to be affected by depression and post-traumatic stress disorder (PTSD), and for a set of demographically matched `control users. We then evaluated these embeddings with respect to: (i) their ability to capture homophilic relations with respect to mental health status; and (ii) the performance of downstream mental health prediction models based on these features. Our experimental results demonstrate that the user embeddings capture similarities between users with respect to mental conditions, and are predictive of mental health.
Many research fields codify their findings in standard formats, often by reporting correlations between quantities of interest. But the space of all testable correlates is far larger than scientific resources can currently address, so the ability to accurately predict correlations would be useful to plan research and allocate resources. Using a dataset of approximately 170,000 correlational findings extracted from leading social science journals, we show that a trained neural network can accurately predict the reported correlations using only the text descriptions of the correlates. Accurate predictive models such as these can guide scientists towards promising untested correlates, better quantify the information gained from new findings, and has implications for moving artificial intelligence systems from predicting structures to predicting relationships in the real world.
Widespread adoption of electronic health records (EHRs) has fueled the development of using machine learning to build prediction models for various clinical outcomes. This process is often constrained by having a relatively small number of patient re cords for training the model. We demonstrate that using patient representation schemes inspired from techniques in natural language processing can increase the accuracy of clinical prediction models by transferring information learned from the entire patient population to the task of training a specific model, where only a subset of the population is relevant. Such patient representation schemes enable a 3.5% mean improvement in AUROC on five prediction tasks compared to standard baselines, with the average improvement rising to 19% when only a small number of patient records are available for training the clinical prediction model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا