ترغب بنشر مسار تعليمي؟ اضغط هنا

On Guptas Co-density Conjecture

115   0   0.0 ( 0 )
 نشر من قبل Guangming Jing
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $G=(V,E)$ be a multigraph. The {em cover index} $xi(G)$ of $G$ is the greatest integer $k$ for which there is a coloring of $E$ with $k$ colors such that each vertex of $G$ is incident with at least one edge of each color. Let $delta(G)$ be the minimum degree of $G$ and let $Phi(G)$ be the {em co-density} of $G$, defined by [Phi(G)=min Big{frac{2|E^+(U)|}{|U|+1}:,, U subseteq V, ,, |U|ge 3 hskip 2mm {rm and hskip 2mm odd} Big},] where $E^+(U)$ is the set of all edges of $G$ with at least one end in $U$. It is easy to see that $xi(G) le min{delta(G), lfloor Phi(G) rfloor}$. In 1978 Gupta proposed the following co-density conjecture: Every multigraph $G$ satisfies $xi(G)ge min{delta(G)-1, , lfloor Phi(G) rfloor}$, which is the dual version of the Goldberg-Seymour conjecture on edge-colorings of multigraphs. In this note we prove that $xi(G)ge min{delta(G)-1, , lfloor Phi(G) rfloor}$ if $Phi(G)$ is not integral and $xi(G)ge min{delta(G)-2, , lfloor Phi(G) rfloor-1}$ otherwise. We also show that this co-density conjecture implies another conjecture concerning cover index made by Gupta in 1967.

قيم البحث

اقرأ أيضاً

Let $G$ be a $k$-connected graph on $n$ vertices. Hippchens Conjecture states that two longest paths in $G$ share at least $k$ vertices. Gutierrez recently proved the conjecture when $kleq 4$ or $kgeq frac{n-2}{3}$. We improve upon both results; name ly, we show that two longest paths in $G$ share at least $k$ vertices when $k=5$ or $kgeq frac{n+2}{5}$. This completely resolves two conjectures of Gutierrez in the affirmative.
107 - Seunghun Lee , Kangmin Yoo 2017
Karasev conjectured that for any set of $3k$ lines in general position in the plane, which is partitioned into $3$ color classes of equal size $k$, the set can be partitioned into $k$ colorful 3-subsets such that all the triangles formed by the subse ts have a point in common. Although the general conjecture is false, we show that Karasevs conjecture is true for lines in convex position. We also discuss possible generalizations of this result.
135 - S. M. Hegde , Suresh Dara 2017
In 1972, Erd{o}s - Faber - Lov{a}sz (EFL) conjectured that, if $textbf{H}$ is a linear hypergraph consisting of $n$ edges of cardinality $n$, then it is possible to color the vertices with $n$ colors so that no two vertices with the same color are in the same edge. In 1978, Deza, Erd{o}s and Frankl had given an equivalent version of the same for graphs: Let $G= bigcup_{i=1}^{n} A_i$ denote a graph with $n$ complete graphs $A_1, A_2,$ $ dots , A_n$, each having exactly $n$ vertices and have the property that every pair of complete graphs has at most one common vertex, then the chromatic number of $G$ is $n$. The clique degree $d^K(v)$ of a vertex $v$ in $G$ is given by $d^K(v) = |{A_i: v in V(A_i), 1 leq i leq n}|$. In this paper we give a method for assigning colors to the graphs satisfying the hypothesis of the Erdos - Faber - Lovasz conjecture using intersection matrix of the cliques $A_i$s of $G$ and clique degrees of the vertices of $G$. Also, we give theoretical proof of the conjecture for some class of graphs. In particular we show that: 1. If $G$ is a graph satisfying the hypothesis of the Conjecture 1.2 and every $A_i$ ($1 leq i leq n$) has at most $sqrt{n}$ vertices of clique degree greater than 1, then $G$ is $n$-colorable. 2. If $G$ is a graph satisfying the hypothesis of the Conjecture 1.2 and every $A_i$ ($1 leq i leq n$) has at most $left lceil {frac{n+d-1}{d}} right rceil$ vertices of clique degree greater than or equal to $d$ ($2leq d leq n$), then $G$ is $n$-colorable.
Hadwigers conjecture is one of the most important and long-standing conjectures in graph theory. Reed and Seymour showed in 2004 that Hadwigers conjecture is true for line graphs. We investigate this conjecture on the closely related class of total g raphs. The total graph of $G$, denoted by $T(G)$, is defined on the vertex set $V(G)sqcup E(G)$ with $c_1,c_2in V(G)sqcup E(G)$ adjacent whenever $c_1$ and $c_2$ are adjacent to or incident on each other in $G$. We first show that there exists a constant $C$ such that, if the connectivity of $G$ is at least $C$, then Hadwigers conjecture is true for $T(G)$. The total chromatic number $chi(G)$ of a graph $G$ is defined to be equal to the chromatic number of its total graph. That is, $chi(G)=chi(T(G))$. Another well-known conjecture in graph theory, the total coloring conjecture or TCC, states that for every graph $G$, $chi(G)leqDelta(G)+2$, where $Delta(G)$ is the maximum degree of $G$. We show that if a weaker version of the total coloring conjecture (weak TCC) namely, $chi(G)leqDelta(G)+3$, is true for a class of graphs $mathcal{F}$ that is closed under the operation of taking subgraphs, then Hadwigers conjecture is true for the class of total graphs of graphs in $mathcal{F}$. This motivated us to look for classes of graphs that satisfy weak TCC. It may be noted that a complete proof of TCC for even 4-colorable graphs (in fact even for planar graphs) has remained elusive even after decades of effort; but weak TCC can be proved easily for 4-colorable graphs. We noticed that in spite of the interest in studying $chi(G)$ in terms of $chi(G)$ right from the initial days, weak TCC is not proven to be true for $k$-colorable graphs even for $k=5$. In the second half of the paper, we make a contribution to the literature on total coloring by proving that $chi(G)leqDelta(G)+3$ for every 5-colorable graph $G$.
The extremal number $mathrm{ex}(n,F)$ of a graph $F$ is the maximum number of edges in an $n$-vertex graph not containing $F$ as a subgraph. A real number $r in [1,2]$ is realisable if there exists a graph $F$ with $mathrm{ex}(n , F) = Theta(n^r)$. S everal decades ago, ErdH{o}s and Simonovits conjectured that every rational number in $[1,2]$ is realisable. Despite decades of effort, the only known realisable numbers are $0,1, frac{7}{5}, 2$, and the numbers of the form $1+frac{1}{m}$, $2-frac{1}{m}$, $2-frac{2}{m}$ for integers $m geq 1$. In particular, it is not even known whether the set of all realisable numbers contains a single limit point other than two numbers $1$ and $2$. In this paper, we make progress on the conjecture of ErdH{o}s and Simonovits. First, we show that $2 - frac{a}{b}$ is realisable for any integers $a,b geq 1$ with $b>a$ and $b equiv pm 1 ~({rm mod}:a)$. This includes all previously known ones, and gives infinitely many limit points $2-frac{1}{m}$ in the set of all realisable numbers as a consequence. Secondly, we propose a conjecture on subdivisions of bipartite graphs. Apart from being interesting on its own, we show that, somewhat surprisingly, this subdivision conjecture in fact implies that every rational number between 1 and 2 is realisable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا