ﻻ يوجد ملخص باللغة العربية
The extremal number $mathrm{ex}(n,F)$ of a graph $F$ is the maximum number of edges in an $n$-vertex graph not containing $F$ as a subgraph. A real number $r in [1,2]$ is realisable if there exists a graph $F$ with $mathrm{ex}(n , F) = Theta(n^r)$. Several decades ago, ErdH{o}s and Simonovits conjectured that every rational number in $[1,2]$ is realisable. Despite decades of effort, the only known realisable numbers are $0,1, frac{7}{5}, 2$, and the numbers of the form $1+frac{1}{m}$, $2-frac{1}{m}$, $2-frac{2}{m}$ for integers $m geq 1$. In particular, it is not even known whether the set of all realisable numbers contains a single limit point other than two numbers $1$ and $2$. In this paper, we make progress on the conjecture of ErdH{o}s and Simonovits. First, we show that $2 - frac{a}{b}$ is realisable for any integers $a,b geq 1$ with $b>a$ and $b equiv pm 1 ~({rm mod}:a)$. This includes all previously known ones, and gives infinitely many limit points $2-frac{1}{m}$ in the set of all realisable numbers as a consequence. Secondly, we propose a conjecture on subdivisions of bipartite graphs. Apart from being interesting on its own, we show that, somewhat surprisingly, this subdivision conjecture in fact implies that every rational number between 1 and 2 is realisable.
Let $F$ be a fixed graph. The rainbow Turan number of $F$ is defined as the maximum number of edges in a graph on $n$ vertices that has a proper edge-coloring with no rainbow copy of $F$ (where a rainbow copy of $F$ means a copy of $F$ all of whose e
Classical questions in extremal graph theory concern the asymptotics of $operatorname{ex}(G, mathcal{H})$ where $mathcal{H}$ is a fixed family of graphs and $G=G_n$ is taken from a `standard increasing sequence of host graphs $(G_1, G_2, dots)$, most
For a graph $H$ consisting of finitely many internally disjoint paths connecting two vertices, with possibly distinct lengths, we estimate the corresponding extremal number $text{ex}(n,H)$. When the lengths of all paths have the same parity, $text{ex
The Turan number of a graph $H$, denoted by $ex(n,H)$, is the maximum number of edges in any graph on $n$ vertices which does not contain $H$ as a subgraph. Let $P_{k}$ denote the path on $k$ vertices and let $mP_{k}$ denote $m$ disjoint copies of $P
For given graphs $G$ and $F$, the Turan number $ex(G,F)$ is defined to be the maximum number of edges in an $F$-free subgraph of $G$. Foucaud, Krivelevich and Perarnau and later independently Briggs and Cox introduced a dual version of this problem w