ﻻ يوجد ملخص باللغة العربية
The ionization efficiency of helicon plasma discharge is explored by changing the low axial magnetic field gradients near the helicon antenna. The highest plasma density is found for a most possible diverging field near the antenna by keeping the other operating condition constant. Measurement of axial wave number together with estimated radial wavenumber suggests the oblique mode propagation of helicon wave along the resonance cone boundary. Propagation of helicon wave near the resonance cone angle boundary can excite electrostatic fluctuations which subsequently can deposit energy in the plasma. This process has been shown to be responsible for peaking in density in low field helicon discharges, where the helicon wave propagates at an angle with respect to the applied uniform magnetic field. The increased efficiency can be explained on the basis of multiple resonances for multimode excitation by the helicon antenna due to the availability of a broad range of magnetic field values in the near field of the antenna when a diverging magnetic field is applied in the source.
The definition of magnetic shuttle is introduced to describe the magnetic space enclosed by two tandem magnetic mirrors with the same field direction and high mirror ratio. Helicon plasma immersed in such a magnetic shuttle which can provide the conf
A low-pressure magnetized plasma is studied to find the dependency of sheath properties on ion-neutral collisions in presence of an inhomogeneous magnetic field. A self-consistent one-dimensional two-fluid hydrodynamic model is considered, and the sy
We measure the expansion of an ultracold plasma across the field lines of a uniform magnetic field. We image the ion distribution by extracting the ions with a high voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma
While plasma often behaves diamagnetically, we demonstrate that the laser irradiation of a thin opaque target with an embedded target-transverse seed magnetic field $B_mathrm{seed}$ can trigger the generation of an order-of-magnitude stronger magneti
This paper reports experiments on self$-$excited dust acoustic waves (DAWs) and its propagation characteristics in a magnetized rf discharge plasma. The DAWs are spontaneously excited in dusty plasma after adding more particles in the confining poten