ﻻ يوجد ملخص باللغة العربية
Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed from Wikipedia and Wikidata with three features: (1) DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text; (2) DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document; (3) along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios. In order to verify the challenges of document-level RE, we implement recent state-of-the-art methods for RE and conduct a thorough evaluation of these methods on DocRED. Empirical results show that DocRED is challenging for existing RE methods, which indicates that document-level RE remains an open problem and requires further efforts. Based on the detailed analysis on the experiments, we discuss multiple promising directions for future research.
In document-level relation extraction (DocRE), graph structure is generally used to encode relation information in the input document to classify the relation category between each entity pair, and has greatly advanced the DocRE task over the past se
Natural language inference (NLI) is formulated as a unified framework for solving various NLP problems such as relation extraction, question answering, summarization, etc. It has been studied intensively in the past few years thanks to the availabili
Document-level relation extraction (DocRE) aims at extracting the semantic relations among entity pairs in a document. In DocRE, a subset of the sentences in a document, called the evidence sentences, might be sufficient for predicting the relation b
Document-level relation extraction aims to extract relations among multiple entity pairs from a document. Previously proposed graph-based or transformer-based models utilize the entities independently, regardless of global information among relationa
Document-level relation extraction (DocRE) models generally use graph networks to implicitly model the reasoning skill (i.e., pattern recognition, logical reasoning, coreference reasoning, etc.) related to the relation between one entity pair in a do