ترغب بنشر مسار تعليمي؟ اضغط هنا

$(1 + varepsilon)$-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets

76   0   0.0 ( 0 )
 نشر من قبل Maxim Borisyak
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Anomaly detection is not an easy problem since distribution of anomalous samples is unknown a priori. We explore a novel method that gives a trade-off possibility between one-class and two-class approaches, and leads to a better performance on anomaly detection problems with small or non-representative anomalous samples. The method is evaluated using several data sets and compared to a set of conventional one-class and two-class approaches.

قيم البحث

اقرأ أيضاً

Class imbalanced datasets are common in real-world applications that range from credit card fraud detection to rare disease diagnostics. Several popular classification algorithms assume that classes are approximately balanced, and hence build the acc ompanying objective function to maximize an overall accuracy rate. In these situations, optimizing the overall accuracy will lead to highly skewed predictions towards the majority class. Moreover, the negative business impact resulting from false positives (positive samples incorrectly classified as negative) can be detrimental. Many methods have been proposed to address the class imbalance problem, including methods such as over-sampling, under-sampling and cost-sensitive methods. In this paper, we consider the over-sampling method, where the aim is to augment the original dataset with synthetically created observations of the minority classes. In particular, inspired by the recent advances in generative modelling techniques (e.g., Variational Inference and Generative Adversarial Networks), we introduce a new oversampling technique based on variational autoencoders. Our experiments show that the new method is superior in augmenting datasets for downstream classification tasks when compared to traditional oversampling methods.
In this paper, we propose an ensemble learning algorithm called textit{under-bagging $k$-nearest neighbors} (textit{under-bagging $k$-NN}) for imbalanced classification problems. On the theoretical side, by developing a new learning theory analysis, we show that with properly chosen parameters, i.e., the number of nearest neighbors $k$, the expected sub-sample size $s$, and the bagging rounds $B$, optimal convergence rates for under-bagging $k$-NN can be achieved under mild assumptions w.r.t.~the arithmetic mean (AM) of recalls. Moreover, we show that with a relatively small $B$, the expected sub-sample size $s$ can be much smaller than the number of training data $n$ at each bagging round, and the number of nearest neighbors $k$ can be reduced simultaneously, especially when the data are highly imbalanced, which leads to substantially lower time complexity and roughly the same space complexity. On the practical side, we conduct numerical experiments to verify the theoretical results on the benefits of the under-bagging technique by the promising AM performance and efficiency of our proposed algorithm.
We study anomaly detection and introduce an algorithm that processes variable length, irregularly sampled sequences or sequences with missing values. Our algorithm is fully unsupervised, however, can be readily extended to supervised or semisupervise d cases when the anomaly labels are present as remarked throughout the paper. Our approach uses the Long Short Term Memory (LSTM) networks in order to extract temporal features and find the most relevant feature vectors for anomaly detection. We incorporate the sampling time information to our model by modulating the standard LSTM model with time modulation gates. After obtaining the most relevant features from the LSTM, we label the sequences using a Support Vector Data Descriptor (SVDD) model. We introduce a loss function and then jointly optimize the feature extraction and sequence processing mechanisms in an end-to-end manner. Through this joint optimization, the LSTM extracts the most relevant features for anomaly detection later to be used in the SVDD, hence completely removes the need for feature selection by expert knowledge. Furthermore, we provide a training algorithm for the online setup, where we optimize our model parameters with individual sequences as the new data arrives. Finally, on real-life datasets, we show that our model significantly outperforms the standard approaches thanks to its combination of LSTM with SVDD and joint optimization.
112 - Lian Yu , Nengfeng Zhou 2021
Imbalanced data set is a problem often found and well-studied in financial industry. In this paper, we reviewed and compared some popular methodologies handling data imbalance. We then applied the under-sampling/over-sampling methodologies to several modeling algorithms on UCI and Keel data sets. The performance was analyzed for class-imbalance methods, modeling algorithms and grid search criteria comparison.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا