ﻻ يوجد ملخص باللغة العربية
Learning the embedding space, where semantically similar objects are located close together and dissimilar objects far apart, is a cornerstone of many computer vision applications. Existing approaches usually learn a single metric in the embedding space for all available data points, which may have a very complex non-uniform distribution with different notions of similarity between objects, e.g. appearance, shape, color or semantic meaning. Approaches for learning a single distance metric often struggle to encode all different types of relationships and do not generalize well. In this work, we propose a novel easy-to-implement divide and conquer approach for deep metric learning, which significantly improves the state-of-the-art performance of metric learning. Our approach utilizes the embedding space more efficiently by jointly splitting the embedding space and data into $K$ smaller sub-problems. It divides both, the data and the embedding space into $K$ subsets and learns $K$ separate distance metrics in the non-overlapping subspaces of the embedding space, defined by groups of neurons in the embedding layer of the neural network. The proposed approach increases the convergence speed and improves generalization since the complexity of each sub-problem is reduced compared to the original one. We show that our approach outperforms the state-of-the-art by a large margin in retrieval, clustering and re-identification tasks on CUB200-2011, CARS196, Stanford Online Products, In-shop Clothes and PKU VehicleID datasets.
Deep metric learning (DML) is a cornerstone of many computer vision applications. It aims at learning a mapping from the input domain to an embedding space, where semantically similar objects are located nearby and dissimilar objects far from another
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions. Our work addresses two key challenges in trajectory prediction, learning multimodal outputs, and better predictions by imposing constraints using dri
Advantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms
With the remarkable success achieved by the Convolutional Neural Networks (CNNs) in object recognition recently, deep learning is being widely used in the computer vision community. Deep Metric Learning (DML), integrating deep learning with conventio
We consider the learning of algorithmic tasks by mere observation of input-output pairs. Rather than studying this as a black-box discrete regression problem with no assumption whatsoever on the input-output mapping, we concentrate on tasks that are