ترغب بنشر مسار تعليمي؟ اضغط هنا

Single spin resonance in a van der Waals embedded paramagnetic defect

183   0   0.0 ( 0 )
 نشر من قبل Amit Finkler
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spins constitute a group of quantum objects forming a key resource in modern quantum technology. Two-dimensional (2D) van der Waals materials are of fundamental interest for studying nanoscale magnetic phenomena. However, isolating singular paramagnetic spins in 2D systems is challenging. We report here on a quantum emitting source embedded within hexgonal boron nitride (h-BN) exhibiting optical magnetic resonance (ODMR). We extract an isotropic $g$ factor close to 2 and derive an upper bound for a zero field splitting (ZFS) ($leq$ 4 MHz). Photoluminescence (PL) behavior under temperature cycling using different excitations is presented, assigning probable zero phonon lines (ZPLs) / phonon side band (PSBs) to emission peaks, compatible with h-BNs phonon density of states, indicating their intrinsic nature. Narrow and inhomogeneous broadened ODMR lines differ significantly from monoatomic vacancy defect lines known in literature. We derive a hyperfine coupling of around 10 MHz. Its angular dependence indicates an unpaired electron in an out-of-plane $pi$-orbital, probably originating from an additional substitutional carbon impurity or other low mass atom. We determine the spin relaxation time $T_1$ to be around 17 $mu$s.



قيم البحث

اقرأ أيضاً

96 - F.Cadiz , C. Robert , E. Courtade 2018
We have combined spatially-resolved steady-state micro-photoluminescence ($mu$PL) with time-resolved photoluminescence (TRPL) to investigate the exciton diffusion in a WSe$_2$ monolayer encapsulated with hexagonal boron nitride (hBN). At 300 K, we ex tract an exciton diffusion length $L_X= 0.36pm 0.02 ; mu$m and an exciton diffusion coefficient of $D_X=14.5 pm 2;mbox{cm}^2$/s. This represents a nearly 10-fold increase in the effective mobility of excitons with respect to several previously reported values on nonencapsulated samples. At cryogenic temperatures, the high optical quality of these samples has allowed us to discriminate the diffusion of the different exciton species : bright and dark neutral excitons, as well as charged excitons. The longer lifetime of dark neutral excitons yields a larger diffusion length of $L_{X^D}=1.5pm 0.02 ;mu$m.
Layered materials can be assembled vertically to fabricate a new class of van der Waals (VDW) heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for con trol of light-matter coupling. Here, we incorporate molybdenum diselenide/boron nitride (MoSe$_2$/hBN) quantum wells (QWs) in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe$_2$ excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe$_2$ monolayer QW, enhanced to 29 meV in MoSe$_2$/hBN/MoSe$_2$ double-QWs. The splitting at resonance provides an estimate of the exciton radiative lifetime of 0.4 ps. Our results pave the way for room temperature polaritonic devices based on multiple-QW VDW heterostructures, where polariton condensation and electrical polariton injection through the incorporation of graphene contacts may be realised.
Carrier multiplication (CM), a photo-physical process to generate multiple electron-hole pairs by exploiting excess energy of free carriers, is explored for efficient photovoltaic conversion of photons from the blue solar band, predominantly wasted a s heat in standard solar cells. Current state-of-the-art approaches with nanomaterials have demonstrated improved CM but are not satisfactory due to high energy loss and inherent difficulties with carrier extraction. Here, we report ultra-efficient CM in van der Waals (vdW) layered materials that commences at the energy conservation limit and proceeds with nearly 100% conversion efficiency. A small threshold energy, as low as twice the bandgap, was achieved, marking an onset of quantum yield with enhanced carrier generation. Strong Coulomb interactions between electrons confined within vdW layers allow rapid electron-electron scattering to prevail over electron-phonon scattering. Additionally, the presence of electron pockets spread over momentum space could also contribute to the high CM efficiency. Combining with high conductivity and optimal bandgap, these superior CM characteristics identify vdW materials for third-generation solar cell.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
Atomically-thin layers of two-dimensional materials can be assembled in vertical stacks held together by relatively weak van der Waals forces, allowing for coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation . A profound consequence of using these degrees of freedom is the emergence of an overarching periodicity in the local atomic registry of the constituent crystal structures, known as a moire superlattice. Its presence in graphene/hexagonal boron nitride (hBN) structures led to the observation of electronic minibands, whereas its effect enhanced by interlayer resonant conditions in twisted graphene bilayers culminated in the observation of the superconductor-insulator transition at magic twist angles. Here, we demonstrate that, in semiconducting heterostructures built of incommensurate MoSe2 and WS2 monolayers, excitonic bands can hybridise, resulting in the resonant enhancement of the moire superlattice effects. MoSe2 and WS2 are specifically chosen for the near degeneracy of their conduction band edges to promote the hybridisation of intra- and interlayer excitons, which manifests itself through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle. This occurs as hybridised excitons (hX) are formed by holes residing in MoSe2 bound to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures with almost aligned pairs of monolayer crystals, resonant mixing of the electron states leads to pronounced effects of the heterostructures geometrical moire pattern on the hX dispersion and optical spectrum. Our findings underpin novel strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا