ﻻ يوجد ملخص باللغة العربية
Atomically-thin layers of two-dimensional materials can be assembled in vertical stacks held together by relatively weak van der Waals forces, allowing for coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation. A profound consequence of using these degrees of freedom is the emergence of an overarching periodicity in the local atomic registry of the constituent crystal structures, known as a moire superlattice. Its presence in graphene/hexagonal boron nitride (hBN) structures led to the observation of electronic minibands, whereas its effect enhanced by interlayer resonant conditions in twisted graphene bilayers culminated in the observation of the superconductor-insulator transition at magic twist angles. Here, we demonstrate that, in semiconducting heterostructures built of incommensurate MoSe2 and WS2 monolayers, excitonic bands can hybridise, resulting in the resonant enhancement of the moire superlattice effects. MoSe2 and WS2 are specifically chosen for the near degeneracy of their conduction band edges to promote the hybridisation of intra- and interlayer excitons, which manifests itself through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle. This occurs as hybridised excitons (hX) are formed by holes residing in MoSe2 bound to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures with almost aligned pairs of monolayer crystals, resonant mixing of the electron states leads to pronounced effects of the heterostructures geometrical moire pattern on the hX dispersion and optical spectrum. Our findings underpin novel strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures.
In van der Waals (vdW) heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moire superlattice. While it is widely recognized that a moire superlattice can modulate the e
Stacking monolayers of transition metal dichalcogenides into a heterostructure with a finite twist-angle gives rise to artificial moire superlattices with a tunable periodicity. As a consequence, excitons experience a periodic potential, which can be
Different atomistic registry between the layers forming the inner and outer nanotubes can form one-dimensional (1D) van der Waals (vdW) moire superlattices. Unlike the two-dimensional (2D) vdW moire superlattices, effects of 1D vdW moire superlattice
The emerging field of twistronics, which harnesses the twist angle between two-dimensional materials, represents a promising route for the design of quantum materials, as the twist-angle-induced superlattices offer means to control topology and stron
We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of Mo* and hexagonal boron nitride (hBN). The emission of neutral and charged excitons is controlled by gate voltage, te