ترغب بنشر مسار تعليمي؟ اضغط هنا

Triple transitivity and non-free actions in dimension one

62   0   0.0 ( 0 )
 نشر من قبل Nicol\\'as Matte Bon
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The transitivity degree of a group $G$ is the supremum of all integers $k$ such that $G$ admits a faithful $k$-transitive action. Few obstructions are known to impose an upper bound on the transitivity degree for infinite groups. The results of this article provide two new classes of groups whose transitivity degree can be computed, as a corollary of a classification of all $3$-transitive actions of these groups. More precisely, suppose that $G$ is a subgroup of the homeomorphism group of the circle $mathsf{Homeo}(mathbb{S}^1)$ or the automorphism group of a tree $mathsf{Aut}(mathbb{T})$. Under natural assumptions on the stabilizers of the action of $G$ on $mathbb{S}^1$ or $partial mathbb{T}$, we use the dynamics of this action to show that every faithful action of $G$ on a set that is at least $3$-transitive must be conjugate to the action of $G$ on one of its orbits in $mathbb{S}^1$ or $partial mathbb{T}$.

قيم البحث

اقرأ أيضاً

92 - Peter Abramenko 2006
We study two transitivity properties for group actions on buildings, called Weyl transitivity and strong transitivity. Following hints by Tits, we give examples involving anisotropic algebraic groups to show that strong transitivity is strictly stron ger than Weyl transitivity. A surprising feature of the examples is that strong transitivity holds more often than expected.
An action of a group $G$ is highly transitive if $G$ acts transitively on $k$-tuples of distinct points for all $k geq 1$. Many examples of groups with a rich geometric or dynamical action admit highly transitive actions. We prove that if a group $G$ admits a highly transitive action such that $G$ does not contain the subgroup of finitary alternating permutations, and if $H$ is a confined subgroup of $G$, then the action of $H$ remains highly transitive, possibly after discarding finitely many points. This result provides a tool to rule out the existence of highly transitive actions, and to classify highly transitive actions of a given group. We give concrete illustrations of these applications in the realm of groups of dynamical origin. In particular we obtain the first non-trivial classification of highly transitive actions of a finitely generated group.
In this monograph, we give an account of the relationship between the algebraic structure of finitely generated and countable groups and the regularity with which they act on manifolds. We concentrate on the case of one--dimensional manifolds, culmin ating with a uniform construction of finitely generated groups acting with prescribed regularity on the compact interval and on the circle. We develop the theory of dynamical obstructions to smoothness, beginning with classical results of Denjoy, to more recent results of Kopell, and to modern results such as the $abt$--Lemma. We give a classification of the right-angled Artin groups that have finite critical regularity and discuss their exact critical regularities in many cases, and we compute the virtual critical regularity of most mapping class groups of orientable surfaces.
A closed subgroup $H$ of a locally compact group $G$ is confined if the closure of the conjugacy class of $H$ in the Chabauty space of $G$ does not contain the trivial subgroup. We establish a dynamical criterion on the action of a totally disconnect ed locally compact group $G$ on a compact space $X$ ensuring that no relatively amenable subgroup of $G$ can be confined. This property is equivalent to the fact that the action of $G$ on its Furstenberg boundary is free. Our criterion applies to the Neretin groups. We deduce that each Neretin group has two inequivalent irreducible unitary representations that are weakly equivalent. This implies that the Neretin groups are not of type I, thereby answering a question of Y.~Neretin.
The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. The resulting poset thus gives rise to a notion of the best hyperbolic action of a group as the largest element of t his poset, if such an element exists. We call such an action a largest hyperbolic action. While hyperbolic groups admit largest hyperbolic actions, we give evidence in this paper that this phenomenon is rare for non-hyperbolic groups. In particular, we prove that many families of groups of geometric origin do not have largest hyperbolic actions, including for instance many 3-manifold groups and most mapping class groups. Our proofs use the quasi-trees of metric spaces of Bestvina--Bromberg--Fujiwara, among other tools. In addition, we give a complete characterization of the poset of hyperbolic actions of Anosov mapping torus groups, and we show that mapping class groups of closed surfaces of genus at least two have hyperbolic actions which are comparable only to the trivial action.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا