A closed subgroup $H$ of a locally compact group $G$ is confined if the closure of the conjugacy class of $H$ in the Chabauty space of $G$ does not contain the trivial subgroup. We establish a dynamical criterion on the action of a totally disconnected locally compact group $G$ on a compact space $X$ ensuring that no relatively amenable subgroup of $G$ can be confined. This property is equivalent to the fact that the action of $G$ on its Furstenberg boundary is free. Our criterion applies to the Neretin groups. We deduce that each Neretin group has two inequivalent irreducible unitary representations that are weakly equivalent. This implies that the Neretin groups are not of type I, thereby answering a question of Y.~Neretin.
The set of equivalence classes of cobounded actions of a group on different hyperbolic metric spaces carries a natural partial order. The resulting poset thus gives rise to a notion of the best hyperbolic action of a group as the largest element of t
his poset, if such an element exists. We call such an action a largest hyperbolic action. While hyperbolic groups admit largest hyperbolic actions, we give evidence in this paper that this phenomenon is rare for non-hyperbolic groups. In particular, we prove that many families of groups of geometric origin do not have largest hyperbolic actions, including for instance many 3-manifold groups and most mapping class groups. Our proofs use the quasi-trees of metric spaces of Bestvina--Bromberg--Fujiwara, among other tools. In addition, we give a complete characterization of the poset of hyperbolic actions of Anosov mapping torus groups, and we show that mapping class groups of closed surfaces of genus at least two have hyperbolic actions which are comparable only to the trivial action.
Let PC be the group of bijections from [0, 1[ to itself which are continuous outside a finite set. Let PC be its quotient by the subgroup of finitely supported permutations. We show that the Kapoudjian class of PC vanishes. That is, the quotient map
PC $rightarrow$ PC splits modulo the alternating subgroup of even permutations. This is shown by constructing a nonzero group homomorphism, called signature, from PC to Z 2Z. Then we use this signature to list normal subgroups of every subgroup G of PC which contains S fin and such that G, the projection of G in PC , is simple.
We give some new characterizations of exactness for locally compact second countable groups. In particular, we prove that a locally compact second countable group is exact if and only if it admits a topologically amenable action on a compact Hausdorf
f space. This answers an open question by Anantharaman-Delaroche.