ﻻ يوجد ملخص باللغة العربية
The newly observed $Xi(1620)^0$ by the Belle Collaboration inspires our interest in performing a systematic study on the interaction of an anti-strange meson $(bar{K}^{(*)})$ with a strange or doubly strange ground octet baryon $mathcal{B}$ ($Lambda$, $Sigma$, and $Xi$), where the spin-orbit force and the recoil correction are considered in the adopted one-boson-exchange model. Our results indicate that $Xi(1620)^0$ can be explained as a $bar{K}Lambda$ molecular state with $I(J^P)=1/2(1/2^-)$ and the intermediate force from $sigma$ exchange plays an important role. Additionally, we also predict several other possible molecular candidates, i.e., the $bar{K}Sigma$ molecular state with $I(J^P)=1/2(1/2^-)$ and the triply strange $bar{K}Xi$ molecular state with $I(J^P)=0(1/2^-)$.
Using a sample of $1.06times10^8 psip$ events produced in $e^+e^-$ collisions at $sqrt{s}$ = 3.686 GeV and collected with the BESIII detector at the BEPCII collider, we present studies of the decays $klx+c.c.$ and $gklx+c.c.$. We observe two hyperons
Using $(448.1pm2.9)times 10^{6}$ $psi(3686)$ events collected with the BESIII detector and a single-baryon tagging technique, we present the first observation of the decays $psi(3686)toXi(1530)^{0}bar{Xi}(1530)^{0}$ and $Xi(1530)^{0}bar{Xi}^0$. The b
We report the first observation of the doubly-strange baryon $Xi(1620)^0$ in its decay to $Xi^-pi^+$ via $Xi_c^+ rightarrow Xi^- pi^+ pi^+$ decays based on a $980,{rm fb}^{-1}$ data sample collected with the Belle detector at the KEKB asymmetric-ener
In this talk, we investigate $Xi(1690)^-$ production from the $K^-pto K^+K^-Lambda$ reaction wit the effective Lagrangian method and consider the $s$- and $u$-channel $Sigma/Lambda$ ground states and resonances for the $Xi$-pole contributions, in add
Various model-independent aspects of the $bar{K} N to K Xi$ reaction are investigated, starting from the determination of the most general structure of the reaction amplitude for $Xi$ baryons with $J^P=frac12^pm$ and $frac32^pm$ and the observables t