ﻻ يوجد ملخص باللغة العربية
This paper introduces two straightforward, effective indices to evaluate the input data and the data flowing through layers of a feedforward deep neural network. For classification problems, the separation rate of target labels in the space of dataflow is explained as a key factor indicating the performance of designed layers in improving the generalization of the network. According to the explained concept, a shapeless distance-based evaluation index is proposed. Similarly, for regression problems, the smoothness rate of target outputs in the space of dataflow is explained as a key factor indicating the performance of designed layers in improving the generalization of the network. According to the explained smoothness concept, a shapeless distance-based smoothness index is proposed for regression problems. To consider more strictly concepts of separation and smoothness, their extend
The goal of this paper is to analyze the geometric properties of deep neural network classifiers in the input space. We specifically study the topology of classification regions created by deep networks, as well as their associated decision boundary.
Visualizing features in deep neural networks (DNNs) can help understanding their computations. Many previous studies aimed to visualize the selectivity of individual units by finding meaningful images that maximize their activation. However, comparab
Wrist Fracture is the most common type of fracture with a high incidence rate. Conventional radiography (i.e. X-ray imaging) is used for wrist fracture detection routinely, but occasionally fracture delineation poses issues and an additional confirma
This paper addresses a challenging problem - how to reduce energy consumption without incurring performance drop when deploying deep neural networks (DNNs) at the inference stage. In order to alleviate the computation and storage burdens, we propose
One of the key challenges in training Spiking Neural Networks (SNNs) is that target outputs typically come in the form of natural signals, such as labels for classification or images for generative models, and need to be encoded into spikes. This is