ﻻ يوجد ملخص باللغة العربية
Magnetic skyrmions are particle-like topological excitations that recently generated much interest as candidates for future spintronic devices based on skyrmion small size, enhanced topological stability, and/or mutual interaction. Here we examine the properties of isolated skyrmions in a frustrated chiral magnet with competing Dzyaloshinskii-Moriya and frustrated exchange interactions. We show that the skyrmion size drastically decreases even for small values of competing stabilization mechanisms. Skyrmion mutual interaction remains attracting as is inherent for frustrated skyrmions, but the value of the Dzyaloshinskii constant regulates the number of minima in the interaction potentials. Moreover, the constructed phase diagrams for a chiral helimagnet contain a distorted spiral state that can be considered as a buffer between the helicoidal and conical one-dimensional modulations. The formulated concepts may further enhance the functionalities of spintronic devices. In particular, the controlled instability of skyrmions with respect to the conical state allows to obtain bimeron-like structures. Moreover, our results provide physical insight into the chiral states in the magnetic systems, e.g., in MnSi$_{1-x}$Ge$_x$.
We report the direct observation of a magnetic-feld induced long-wavelength spin spiral modulation in the chiral compound Ba3TaFe3Si2O14. This new spin texture emerges out of a chiral helical ground state, and is hallmarked by the onset of a unique c
Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral it
We develop a theory of the magnetic field-induced formation of Skyrmion crystal state in chiral magnets in two spatial dimensions, motivated by the recent discovery of the Skyrmionic phase of magnetization in thin film of Fe$_{0.5}$Co$_{0.5}$Si and i
We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ~50nm is sufficient to nucleate antivortices in a 25nm Nb film, with unique signatures in the magnet
We find numerically skyrmionic textures with skyrmion number Q=0 in ferromagnets with the Dzyaloshinskii-Moriya interaction and perpendicular anisotropy. These have the form of a skyrmion-antiskyrmion pair and may be called chiral droplets. They are