ترغب بنشر مسار تعليمي؟ اضغط هنا

Skyrmion Lattice in Two-Dimensional Chiral Magnet

148   0   0.0 ( 0 )
 نشر من قبل Jung Hoon Han
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a theory of the magnetic field-induced formation of Skyrmion crystal state in chiral magnets in two spatial dimensions, motivated by the recent discovery of the Skyrmionic phase of magnetization in thin film of Fe$_{0.5}$Co$_{0.5}$Si and in the A-phase of MnSi. Ginzburg-Landau functional of the chiral magnet re-written in the CP$^1$ representation is shown to be a convenient framework for the analysis of the Skyrmion states. Phase diagram of the model at zero temperature gives a sequence of ground states, helical spin $rightarrow$ Skyrme crystal $rightarrow$ ferromagnet, as the external field $B$ increases, in good accord with the thin-film experiment. In close analogy with Abrikosovs derivation of the vortex lattice solution in type-II superconductor, the CP$^1$ mean-field equation is solved and shown to reproduce the Skyrmion crystal state.



قيم البحث

اقرأ أيضاً

Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral it inerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states.
84 - Han Zhang , Qing Huang , Lin Hao 2020
We performed a systematic study of the temperature- and field-dependence of magnetization and resistivity of Gd2PdSi3, which is a centrosymmetric skyrmion crystal. While the magnetization behavior is consistent with the reported phase diagram based o n susceptibility, we show that a phase diagram can also be constructed based on the anomalous magnetoresistance with one-to-one correspondence among all the features. In addition, the crossover boundary into the field-induced ferromagnetic state is also identified. Our results suggest that the ferromagnetic spin fluctuations above the Neel temperature play a key role in the high sensitivity of the resistivity anomalies to magnetic field, pointing to the rich interplay of different magnetic correlations at zero and finite wave vectors underlying the skyrmion lattice in this frustrated itinerant magnet.
We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ~50nm is sufficient to nucleate antivortices in a 25nm Nb film, with unique signatures in the magnet ization, critical current and flux dynamics, corroborated via simulations. We also detect a thermally-tunable Rashba-Edelstein exchange coupling in the isolated skyrmion phase. This realization of a strongly interacting skyrmion-(anti)vortex system opens a path towards controllable topological hybrid materials, unattainable to date.
Magnetic skyrmions are topologically stable spin swirls with particle-like character and potentially suitable for the design of high-density information bits. While most known skyrmion systems arise in noncentrosymmetric systems with Dzyaloshinskii-M oriya interaction, also centrosymmetric magnets with a triangular lattice can give rise to skyrmion formation, with geometrically-frustrated lattice being considered essential in this case. Until today, it remains an open question if skyrmions can also exist in the absence of both geometrically-frustrated lattice and inversion symmetry breaking. Here, we discover a square skyrmion lattice state with 1.9 nm diameter skyrmions in the centrosymmetric tetragonal magnet GdRu2Si2 without geometrically-frustrated lattice by means of resonant X-ray scattering and Lorentz transmission electron microscopy experiments. A plausible origin of the observed skyrmion formation is four-spin interactions mediated by itinerant electrons in the presence of easy-axis anisotropy. Our results suggest that rare-earth intermetallics with highly-symmetric crystal lattices may ubiquitously host nanometric skyrmions of exotic origins.
We study the melting of skyrmions in a two-dimensional Heisenberg chiral magnet with bi-axial Dzyaloshinskii--Moriya interactions. These topological excitations may form at zero temperature a triangular crystal with long-range positional order. Howev er, we show using large-scale Monte Carlo simulations that at small finite temperature, the skyrmions rather form a typical two-dimensional solid: Positional correlations decay with distance as power laws while the orientational correlations remain finite. At higher temperature, we observe a direct transition from this two-dimensional solid to a liquid with short-range correlations. This differs from generic two-dimensional homogeneous particle systems, where a hexatic phase is realized between the solid and the liquid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا