ترغب بنشر مسار تعليمي؟ اضغط هنا

Nilpotent elements in the cohomology of the classifying space of a connected Lie group

342   0   0.0 ( 0 )
 نشر من قبل Masaki Kameko
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Masaki Kameko




اسأل ChatGPT حول البحث

We give an example of a compact connected Lie group of the lowest rank such that the mod 2 cohomology ring of its classifying space has a nonzero nilpotent element.



قيم البحث

اقرأ أيضاً

148 - Sebastian Thomas 2009
We give an algebraic proof for the result of Eilenberg and Mac Lane that the second cohomology group of a simplicial group G can be computed as a quotient of a fibre product involving the first two homotopy groups and the first Postnikov invariant of G. Our main tool is the theory of crossed module extensions of groups.
Let $n$ be a fixed positive integer and $h: {1,2,ldots,n} rightarrow {1,2,ldots,n}$ a Hessenberg function. The main results of this paper are twofold. First, we give a systematic method, depending in a simple manner on the Hessenberg function $h$, fo r producing an explicit presentation by generators and relations of the cohomology ring $H^ast(Hess(mathsf{N},h))$ with $mathbb{Q}$ coefficients of the corresponding regular nilpotent Hessenberg variety $Hess(mathsf{N},h)$. Our result generalizes known results in special cases such as the Peterson variety and also allows us to answer a question posed by Mbirika and Tymoczko. Moreover, our list of generators in fact forms a regular sequence, allowing us to use techniques from commutative algebra in our arguments. Our second main result gives an isomorphism between the cohomology ring $H^*(Hess(mathsf{N},h))$ of the regular nilpotent Hessenberg variety and the $S_n$-invariant subring $H^*(Hess(mathsf{S},h))^{S_n}$ of the cohomology ring of the regular semisimple Hessenberg variety (with respect to the $S_n$-action on $H^*(Hess(mathsf{S},h))$ defined by Tymoczko). Our second main result implies that $mathrm{dim}_{mathbb{Q}} H^k(Hess(mathsf{N},h)) = mathrm{dim}_{mathbb{Q}} H^k(Hess(mathsf{S},h))^{S_n}$ for all $k$ and hence partially proves the Shareshian-Wachs conjecture in combinatorics, which is in turn related to the well-known Stanley-Stembridge conjecture. A proof of the full Shareshian-Wachs conjecture was recently given by Brosnan and Chow, but in our special case, our methods yield a stronger result (i.e. an isomorphism of rings) by more elementary considerations. This paper provides detailed proofs of results we recorded previously in a research announcement.
188 - Gregory Ginot , Ping Xu 2010
In this paper we study the cohomology of (strict) Lie 2-groups. We obtain an explicit Bott-Shulman type map in the case of a Lie 2-group corresponding to the crossed module $Ato 1$. The cohomology of the Lie 2-groups corresponding to the universal cr ossed modules $Gto Aut(G)$ and $Gto Aut^+(G)$ is the abutment of a spectral sequence involving the cohomology of $GL(n,Z)$ and $SL(n,Z)$. When the dimension of the center of $G$ is less than 3, we compute explicitly these cohomology groups. We also compute the cohomology of the Lie 2-group corresponding to a crossed module $Gto H$ whose kernel is compact and cokernel is connected, simply connected and compact and apply the result to the string 2-group.
72 - Wende Liu , Yong Yang , 2018
In this paper, we study the cup products and Betti numbers over cohomology superspaces of two-step nilpotent Lie superalgebras with coefficients in the adjoint modules over an algebraically closed field of characteristic zero. As an application, we p rove that the cup product over the adjoint cohomology superspaces for Heisenberg Lie superalgebras is trivial and we also determine the adjoint Betti numbers for Heisenberg Lie superalgebras by means of Hochschild-Serre spectral sequences.
This thesis consists of two main parts. In the second part, we recall how a description of local coefficients that Eilenberg introduced in the 1940s leads to spectral sequences for the computation of homology and cohomology with local coefficients. W e then show how to construct new equivariant analogues of these spectral sequences for RO(G)-graded Bredon homology and cohomology. Finally, we use these spectral sequences to complete a sample calculation, in which we use the equivariant Serre spectral sequence and the equivariant cohomology of complex projective spaces to compute the cohomology of the equivariant classifying space B_Cp O(2). However, to complete this sample computation, we need to know the cohomology of complex projective space. This calculation was done in a 1988 paper by Gaunce Lewis, but relies on a theorem whose proof as given was incorrect. We spend the first part of this thesis providing a correct proof and summarizing the results of Lewiss paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا