ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating Causal Effects of Tone in Online Debates

102   0   0.0 ( 0 )
 نشر من قبل Dhanya Sridhar
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Statistical methods applied to social media posts shed light on the dynamics of online dialogue. For example, users wording choices predict their persuasiveness and users adopt the language patterns of other dialogue participants. In this paper, we estimate the causal effect of reply tones in debates on linguistic and sentiment changes in subsequent responses. The challenge for this estimation is that a replys tone and subsequent responses are confounded by the users ideologies on the debate topic and their emotions. To overcome this challenge, we learn representations of ideology using generative models of text. We study debates from 4Forums and compare annotated tones of replying such as emotional versus factual, or reasonable versus attacking. We show that our latent confounder representation reduces bias in ATE estimation. Our results suggest that factual and asserting tones affect dialogue and provide a methodology for estimating causal effects from text.



قيم البحث

اقرأ أيضاً

Recent advances in computer vision and deep learning have led to breakthroughs in the development of automated skin image analysis. In particular, skin cancer classification models have achieved performance higher than trained expert dermatologists. However, no attempt has been made to evaluate the consistency in performance of machine learning models across populations with varying skin tones. In this paper, we present an approach to estimate skin tone in benchmark skin disease datasets, and investigate whether model performance is dependent on this measure. Specifically, we use individual typology angle (ITA) to approximate skin tone in dermatology datasets. We look at the distribution of ITA values to better understand skin color representation in two benchmark datasets: 1) the ISIC 2018 Challenge dataset, a collection of dermoscopic images of skin lesions for the detection of skin cancer, and 2) the SD-198 dataset, a collection of clinical images capturing a wide variety of skin diseases. To estimate ITA, we first develop segmentation models to isolate non-diseased areas of skin. We find that the majority of the data in the the two datasets have ITA values between 34.5{deg} and 48{deg}, which are associated with lighter skin, and is consistent with under-representation of darker skinned populations in these datasets. We also find no measurable correlation between performance of machine learning model and ITA values, though more comprehensive data is needed for further validation.
Forest-based methods have recently gained in popularity for non-parametric treatment effect estimation. Building on this line of work, we introduce causal survival forests, which can be used to estimate heterogeneous treatment effects in a survival a nd observational setting where outcomes may be right-censored. Our approach relies on orthogonal estimating equations to robustly adjust for both censoring and selection effects. In our experiments, we find our approach to perform well relative to a number of baselines.
We consider the problem of using observational data to estimate the causal effects of linguistic properties. For example, does writing a complaint politely lead to a faster response time? How much will a positive product review increase sales? This p aper addresses two technical challenges related to the problem before developing a practical method. First, we formalize the causal quantity of interest as the effect of a writers intent, and establish the assumptions necessary to identify this from observational data. Second, in practice, we only have access to noisy proxies for the linguistic properties of interest -- e.g., predictions from classifiers and lexicons. We propose an estimator for this setting and prove that its bias is bounded when we perform an adjustment for the text. Based on these results, we introduce TextCause, an algorithm for estimating causal effects of linguistic properties. The method leverages (1) distant supervision to improve the quality of noisy proxies, and (2) a pre-trained language model (BERT) to adjust for the text. We show that the proposed method outperforms related approaches when estimating the effect of Amazon review sentiment on semi-simulated sales figures. Finally, we present an applied case study investigating the effects of complaint politeness on bureaucratic response times.
Estimating the Individual Treatment Effect from observational data, defined as the difference between outcomes with and without treatment or intervention, while observing just one of both, is a challenging problems in causal learning. In this paper, we formulate this problem as an inference from hidden variables and enforce causal constraints based on a model of four exclusive causal populations. We propose a new version of the EM algorithm, coined as Expected-Causality-Maximization (ECM) algorithm and provide hints on its convergence under mild conditions. We compare our algorithm to baseline methods on synthetic and real-world data and discuss its performances.
Estimation of causal effects is fundamental in situations were the underlying system will be subject to active interventions. Part of building a causal inference engine is defining how variables relate to each other, that is, defining the functional relationship between variables given conditional dependencies. In this paper, we deviate from the common assumption of linear relationships in causal models by making use of neural autoregressive density estimators and use them to estimate causal effects within the Pearls do-calculus framework. Using synthetic data, we show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا