ترغب بنشر مسار تعليمي؟ اضغط هنا

A cost-reducing partial labeling estimator in text classification problem

291   0   0.0 ( 0 )
 نشر من قبل Jiangning Chen
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new approach to address the text classification problems when learning with partial labels is beneficial. Instead of offering each training sample a set of candidate labels, we assign negative-oriented labels to the ambiguous training examples if they are unlikely fall into certain classes. We construct our new maximum likelihood estimators with self-correction property, and prove that under some conditions, our estimators converge faster. Also we discuss the advantages of applying one of our estimator to a fully supervised learning problem. The proposed method has potential applicability in many areas, such as crowdsourcing, natural language processing and medical image analysis.

قيم البحث

اقرأ أيضاً

We propose to model the text classification process as a sequential decision process. In this process, an agent learns to classify documents into topics while reading the document sentences sequentially and learns to stop as soon as enough informatio n was read for deciding. The proposed algorithm is based on a modelisation of Text Classification as a Markov Decision Process and learns by using Reinforcement Learning. Experiments on four different classical mono-label corpora show that the proposed approach performs comparably to classical SVM approaches for large training sets, and better for small training sets. In addition, the model automatically adapts its reading process to the quantity of training information provided.
Text classification is one of the most critical areas in machine learning and artificial intelligence research. It has been actively adopted in many business applications such as conversational intelligence systems, news articles categorizations, sen timent analysis, emotion detection systems, and many other recommendation systems in our daily life. One of the problems in supervised text classification models is that the models performance depends heavily on the quality of data labeling that is typically done by humans. In this study, we propose a new network community detection-based approach to automatically label and classify text data into multiclass value spaces. Specifically, we build networks with sentences as the network nodes and pairwise cosine similarities between the Term Frequency-Inversed Document Frequency (TFIDF) vector representations of the sentences as the network link weights. We use the Louvain method to detect the communities in the sentence networks. We train and test the Support Vector Machine and the Random Forest models on both the human-labeled data and network community detection labeled data. Results showed that models with the data labeled by the network community detection outperformed the models with the human-labeled data by 2.68-3.75% of classification accuracy. Our method may help developments of more accurate conversational intelligence and other text classification systems.
Diversity plays a vital role in many text generating applications. In recent years, Conditional Variational Auto Encoders (CVAE) have shown promising performances for this task. However, they often encounter the so called KL-Vanishing problem. Previo us works mitigated such problem by heuristic methods such as strengthening the encoder or weakening the decoder while optimizing the CVAE objective function. Nevertheless, the optimizing direction of these methods are implicit and it is hard to find an appropriate degree to which these methods should be applied. In this paper, we propose an explicit optimizing objective to complement the CVAE to directly pull away from KL-vanishing. In fact, this objective term guides the encoder towards the best encoder of the decoder to enhance the expressiveness. A labeling network is introduced to estimate the best encoder. It provides a continuous label in the latent space of CVAE to help build a close connection between latent variables and targets. The whole proposed method is named Self Labeling CVAE~(SLCVAE). To accelerate the research of diverse text generation, we also propose a large native one-to-many dataset. Extensive experiments are conducted on two tasks, which show that our method largely improves the generating diversity while achieving comparable accuracy compared with state-of-art algorithms.
We empirically characterize the performance of discriminative and generative LSTM models for text classification. We find that although RNN-based generative models are more powerful than their bag-of-words ancestors (e.g., they account for conditiona l dependencies across words in a document), they have higher asymptotic error rates than discriminatively trained RNN models. However we also find that generative models approach their asymptotic error rate more rapidly than their discriminative counterparts---the same pattern that Ng & Jordan (2001) proved holds for linear classification models that make more naive conditional independence assumptions. Building on this finding, we hypothesize that RNN-based generative classification models will be more robust to shifts in the data distribution. This hypothesis is confirmed in a series of experiments in zero-shot and continual learning settings that show that generative models substantially outperform discriminative models.
Developed so far, multi-document summarization has reached its bottleneck due to the lack of sufficient training data and diverse categories of documents. Text classification just makes up for these deficiencies. In this paper, we propose a novel sum marization system called TCSum, which leverages plentiful text classification data to improve the performance of multi-document summarization. TCSum projects documents onto distributed representations which act as a bridge between text classification and summarization. It also utilizes the classification results to produce summaries of different styles. Extensive experiments on DUC generic multi-document summarization datasets show that, TCSum can achieve the state-of-the-art performance without using any hand-crafted features and has the capability to catch the variations of summary styles with respect to different text categories.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا