ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Adversarial Robustness via Logit Regularization Methods

82   0   0.0 ( 0 )
 نشر من قبل Cecilia Summers
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While great progress has been made at making neural networks effective across a wide range of visual tasks, most models are surprisingly vulnerable. This frailness takes the form of small, carefully chosen perturbations of their input, known as adversarial examples, which represent a security threat for learned vision models in the wild -- a threat which should be responsibly defended against in safety-critical applications of computer vision. In this paper, we advocate for and experimentally investigate the use of a family of logit regularization techniques as an adversarial defense, which can be used in conjunction with other methods for creating adversarial robustness at little to no marginal cost. We also demonstrate that much of the effectiveness of one recent adversarial defense mechanism can in fact be attributed to logit regularization, and show how to improve its defense against both white-box and black-box attacks, in the process creating a stronger black-box attack against PGD-based models. We validate our methods on three datasets and include results on both gradient-free attacks and strong gradient-based iterative attacks with as many as 1,000 steps.

قيم البحث

اقرأ أيضاً

Adversarial attack has recently become a tremendous threat to deep learning models. To improve the robustness of machine learning models, adversarial training, formulated as a minimax optimization problem, has been recognized as one of the most effec tive defense mechanisms. However, the non-convex and non-concave property poses a great challenge to the minimax training. In this paper, we empirically demonstrate that the commonly used PGD attack may not be optimal for inner maximization, and improved inner optimizer can lead to a more robust model. Then we leverage a learning-to-learn (L2L) framework to train an optimizer with recurrent neural networks, providing update directions and steps adaptively for the inner problem. By co-training optimizers parameters and models weights, the proposed framework consistently improves the model robustness over PGD-based adversarial training and TRADES.
Adversarial robustness has become a topic of growing interest in machine learning since it was observed that neural networks tend to be brittle. We propose an information-geometric formulation of adversarial defense and introduce FIRE, a new Fisher-R ao regularization for the categorical cross-entropy loss, which is based on the geodesic distance between natural and perturbed input features. Based on the information-geometric properties of the class of softmax distributions, we derive an explicit characterization of the Fisher-Rao Distance (FRD) for the binary and multiclass cases, and draw some interesting properties as well as connections with standard regularization metrics. Furthermore, for a simple linear and Gaussian model, we show that all Pareto-optimal points in the accuracy-robustness region can be reached by FIRE while other state-of-the-art methods fail. Empirically, we evaluate the performance of various classifiers trained with the proposed loss on standard datasets, showing up to 2% of improvements in terms of robustness while reducing the training time by 20% over the best-performing methods.
Deep learning models are prone to being fooled by imperceptible perturbations known as adversarial attacks. In this work, we study how equipping models with Test-time Transformation Ensembling (TTE) can work as a reliable defense against such attacks . While transforming the input data, both at train and test times, is known to enhance model performance, its effects on adversarial robustness have not been studied. Here, we present a comprehensive empirical study of the impact of TTE, in the form of widely-used image transforms, on adversarial robustness. We show that TTE consistently improves model robustness against a variety of powerful attacks without any need for re-training, and that this improvement comes at virtually no trade-off with accuracy on clean samples. Finally, we show that the benefits of TTE transfer even to the certified robustness domain, in which TTE provides sizable and consistent improvements.
Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typi cally aim for being unsuspicious, even if perceptible. However, there is no universal notion of what it means for adversarial examples to be unsuspicious. We propose an approach for modeling suspiciousness by leveraging cognitive salience. Specifically, we split an image into foreground (salient region) and background (the rest), and allow significantly larger adversarial perturbations in the background, while ensuring that cognitive salience of background remains low. We describe how to compute the resulting non-salience-preserving dual-perturbation attacks on classifiers. We then experimentally demonstrate that our attacks indeed do not significantly change perceptual salience of the background, but are highly effective against classifiers robust to conventional attacks. Furthermore, we show that adversarial training with dual-perturbation attacks yields classifiers that are more robust to these than state-of-the-art robust learning approaches, and comparable in terms of robustness to conventional attacks.
Deep learning algorithms have increasingly been shown to lack robustness to simple adversarial examples (AdvX). An equally troubling observation is that these adversarial examples transfer between different architectures trained on different datasets . We investigate the transferability of adversarial examples between models using the angle between the input-output Jacobians of different models. To demonstrate the relevance of this approach, we perform case studies that involve jointly training pairs of models. These case studies empirically justify the theoretical intuitions for why the angle between gradients is a fundamental quantity in AdvX transferability. Furthermore, we consider the asymmetry of AdvX transferability between two models of the same architecture and explain it in terms of differences in gradient norms between the models. Lastly, we provide a simple modification to existing training setups that reduces transferability of adversarial examples between pairs of models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا