ترغب بنشر مسار تعليمي؟ اضغط هنا

The key to the weak-ties phenomenon

369   0   0.0 ( 0 )
 نشر من قبل Keke Shang
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of the weak-ties phenomenon has a long and well documented history, research into the application of this social phenomenon has recently attracted increasing attention. However, further exploration of the reasons behind the weak-ties phenomenon is still challenging. Fortunately, data-driven network science provides a novel way with substantial explanatory power to analyze the causal mechanism behind social phenomenon. Inspired by this perspective, we propose an approach to further explore the driving factors behind the temporal weak-ties phenomenon. We find that the obvious intuition underlying the weak-ties phenomenon is incorrect, and often large numbers of unknown mutual friends associated with these weak ties is one of the key reason for the emergence of the weak-ties phenomenon. In particular, for example scientific collaborators with weak ties prefer to be involved in direct collaboration rather than share ideas with mutual colleagues -- there is a natural tendency to collapse short strong chains of connection.



قيم البحث

اقرأ أيضاً

Background: Controlling global epidemics in the real world and accelerating information propagation in the artificial world are of great significance, which have activated an upsurge in the studies on networked spreading dynamics. Lots of efforts hav e been made to understand the impacts of macroscopic statistics (e.g., degree distribution and average distance) and mesoscopic structures (e.g., communities and rich clubs) on spreading processes while the microscopic elements are less concerned. In particular, roles of ties are not yet clear to the academic community. Methodology/Principle Findings: Every edges is stamped by its strength that is defined solely based on the local topology. According to a weighted susceptible-infected-susceptible model, the steady-state infected density and spreading speed are respectively optimized by adjusting the relationship between edges strength and spreading ability. Experiments on six real networks show that the infected density is increased when strong ties are favored in the spreading, while the speed is enhanced when weak ties are favored. Significance of these findings is further demonstrated by comparing with a null model. Conclusions/Significance: Experimental results indicate that strong and weak ties play distinguishable roles in spreading dynamics: the former enlarge the infected density while the latter fasten the process. The proposed method provides a quantitative way to reveal the qualitatively different roles of ties, which could find applications in analyzing many networked dynamical processes with multiple performance indices, such as synchronizability and converging time in synchronization and throughput and delivering time in transportation.
It is generally accepted that neighboring nodes in financial networks are negatively assorted with respect to the correlation between their degrees. This feature would play an important damping role in the market during downturns (periods of distress ) since this connectivity pattern between firms lowers the chances of auto-amplifying (the propagation of) distress. In this paper we explore a trade-network of industrial firms where the nodes are suppliers or buyers, and the links are those invoices that the suppliers send out to their buyers and then go on to present to their bank for discounting. The network was collected by a large Italian bank in 2007, from their intermediation of the sales on credit made by their clients. The network also shows dissortative behavior as seen in other studies on financial networks. However, when looking at the credit rating of the firms, an important attribute internal to each node, we find that firms that trade with one another share overwhelming similarity. We know that much data is missing from our data set. However, we can quantify the amount of missing data using information exposure, a variable that connects social structure and behavior. This variable is a ratio of the sales invoices that a supplier presents to their bank over their total sales. Results reveal a non-trivial and robust relationship between the information exposure and credit rating of a firm, indicating the influence of the neighbors on a firms rating. This methodology provides a new insight into how to reconstruct a network suffering from incomplete information.
There are different measures to classify a networks data set that, depending on the problem, have different success. For example, the resistance distance and eigenvector centrality measures have been successful in revealing ecological pathways and di fferentiating between biomedical images of patients with Alzheimers disease, respectively. The resistance distance measures the effective distance between any two nodes of a network taking into account all possible shortest paths between them and the eigenvector centrality measures the relative importance of each node in the network. However, both measures require knowing the networks eigenvalues and eigenvectors -- eigenvectors being the more computationally demanding task. Here, we show that we can closely approximate these two measures using only the eigenvalue spectra, where we illustrate this by experimenting on elemental resistor circuits and paradigmatic network models -- random and small-world networks. Our results are supported by analytical derivations, showing that the eigenvector centrality can be perfectly matched in all cases whilst the resistance distance can be closely approximated. Our underlying approach is based on the work by Denton, Parke, Tao, and Zhang [arXiv:1908.03795 (2019)], which is unrestricted to these topological measures and can be applied to most problems requiring the calculation of eigenvectors.
In this paper we apply techniques of complex network analysis to data sources representing public funding programs and discuss the importance of the considered indicators for program evaluation. Starting from the Open Data repository of the 2007-2013 Italian Program Programma Operativo Nazionale Ricerca e Competitivit`a (PON R&C), we build a set of data models and perform network analysis over them. We discuss the obtained experimental results outlining interesting new perspectives that emerge from the application of the proposed methods to the socio-economical evaluation of funded programs.
Wikipedia is a free Internet encyclopedia with an enormous amount of content. This encyclopedia is written by volunteers with various backgrounds in a collective fashion; anyone can access and edit most of the articles. This open-editing nature may g ive us prejudice that Wikipedia is an unstable and unreliable source; yet many studies suggest that Wikipedia is even more accurate and self-consistent than traditional encyclopedias. Scholars have attempted to understand such extraordinary credibility, but usually used the number of edits as the unit of time, without consideration of real time. In this work, we probe the formation of such collective intelligence through a systematic analysis using the entire history of 34,534,110 English Wikipedia articles, between 2001 and 2014. From this massive data set, we observe the universality of both timewise and lengthwise editing scales, which suggests that it is essential to consider the real-time dynamics. By considering real time, we find the existence of distinct growth patterns that are unobserved by utilizing the number of edits as the unit of time. To account for these results, we present a mechanistic model that adopts the article editing dynamics based on both editor-editor and editor-article interactions. The model successfully generates the key properties of real Wikipedia articles such as distinct types of articles for the editing patterns characterized by the interrelationship between the numbers of edits and editors, and the article size. In addition, the model indicates that infrequently referred articles tend to grow faster than frequently referred ones, and articles attracting a high motivation to edit counterintuitively reduce the number of participants. We suggest that this decay of participants eventually brings inequality among the editors, which will become more severe with time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا