ﻻ يوجد ملخص باللغة العربية
A key component of most neural network architectures is the use of normalization layers, such as Batch Normalization. Despite its common use and large utility in optimizing deep architectures, it has been challenging both to generically improve upon Batch Normalization and to understand the circumstances that lend themselves to other enhancements. In this paper, we identify four improvements to the generic form of Batch Normalization and the circumstances under which they work, yielding performance gains across all batch sizes while requiring no additional computation during training. These contributions include proposing a method for reasoning about the current example in inference normalization statistics, fixing a training vs. inference discrepancy; recognizing and validating the powerful regularization effect of Ghost Batch Normalization for small and medium batch sizes; examining the effect of weight decay regularization on the scaling and shifting parameters gamma and beta; and identifying a new normalization algorithm for very small batch sizes by combining the strengths of Batch and Group Normalization. We validate our results empirically on six datasets: CIFAR-100, SVHN, Caltech-256, Oxford Flowers-102, CUB-2011, and ImageNet.
We investigate the reasons for the performance degradation incurred with batch-independent normalization. We find that the prototypical techniques of layer normalization and instance normalization both induce the appearance of failure modes in the ne
A well-known issue of Batch Normalization is its significantly reduced effectiveness in the case of small mini-batch sizes. When a mini-batch contains few examples, the statistics upon which the normalization is defined cannot be reliably estimated f
Batch Normalization (BN)(Ioffe and Szegedy 2015) normalizes the features of an input image via statistics of a batch of images and hence BN will bring the noise to the gradient of the training loss. Previous works indicate that the noise is important
Deep Convolutional Neural Networks (DCNNs) are hard and time-consuming to train. Normalization is one of the effective solutions. Among previous normalization methods, Batch Normalization (BN) performs well at medium and large batch sizes and is with
Batch normalization (BN) is a technique to normalize activations in intermediate layers of deep neural networks. Its tendency to improve accuracy and speed up training have established BN as a favorite technique in deep learning. Yet, despite its eno