ﻻ يوجد ملخص باللغة العربية
A variety of organic-inorganic hybrid perovskites (APbX3) consisting of mixed center cations [A = CH3NH3+, HC(NH2)2+, Cs+] with different PbX3- cages (X = I, Br, Cl) have been developed to realize high-efficiency solar cells. Nevertheless, clear understanding for the effects of A and X on the optical transition has been lacking. Here, we present universal rules that allow the unified interpretation of the optical absorption in various hybrid perovskites. In particular, we find that the influence of the A-site cation on the light absorption is rather significant and the absorption coefficient (alpha) reduces to half when CH3NH3+ is replaced with HC(NH2)2+ in the APbI3 system. Our density functional theory (DFT) calculations reproduce all of the fine absorption features observed in HC(NH2)2PbI3 and CH3NH3PbBr3, allowing the unique assignment of the interband transitions in the Brillouin zone. In contrast to general understanding that the A-site cation involves weakly in the optical process, our theoretical calculations reveal that the center cation plays a critical role in the interband transition and the absorption strength in the visible region is modified by the strong A-X interaction. Furthermore, our systematic analyses show that the variation of the absorption spectrum with X can be described simply by the well-known sum rule. The universal rules established in this study explain the large reduction of alpha in HC(NH2)2PbI3 and predict CsPbI3 as the highest alpha material.
ZnO/GaN alloys exhibit exceptional photocatalyst applications owing to the flexibly tunable band gaps that cover a wide range of the solar spectrum, and thus have attracted extensive attentions over the past few years. In this study, first-principles
In materials science and engineering, one is typically searching for materials that exhibit exceptional performance for a certain function, and the number of these materials is extremely small. Thus, statistically speaking, we are interested in the i
Semiconductor compounds are widely used for water splitting applications, where photo-generated electron-hole pairs are exploited to induce catalysis. Recently, powders of a metallic oxide (Sr$_{1-x}$NbO$_3$, 0.03 < x < 0.20) have shown competitive p
Tail state formation in solar cell absorbers leads to a detrimental effect on solar cell performance. Nevertheless, the characterization of the band tailing in experimental semiconductor crystals is generally difficult. In this article, to determine
We derive a dielectric-dependent hybrid functional which accurately describes the electronic properties of heterogeneous interfaces and surfaces, as well as those of three- and two-dimensional bulk solids. The functional, which does not contain any a