ﻻ يوجد ملخص باللغة العربية
The study of mouse social behaviours has been increasingly undertaken in neuroscience research. However, automated quantification of mouse behaviours from the videos of interacting mice is still a challenging problem, where object tracking plays a key role in locating mice in their living spaces. Artificial markers are often applied for multiple mice tracking, which are intrusive and consequently interfere with the movements of mice in a dynamic environment. In this paper, we propose a novel method to continuously track several mice and individual parts without requiring any specific tagging. Firstly, we propose an efficient and robust deep learning based mouse part detection scheme to generate part candidates. Subsequently, we propose a novel Bayesian Integer Linear Programming Model that jointly assigns the part candidates to individual targets with necessary geometric constraints whilst establishing pair-wise association between the detected parts. There is no publicly available dataset in the research community that provides a quantitative test-bed for the part detection and tracking of multiple mice, and we here introduce a new challenging Multi-Mice PartsTrack dataset that is made of complex behaviours and actions. Finally, we evaluate our proposed approach against several baselines on our new datasets, where the results show that our method outperforms the other state-of-the-art approaches in terms of accuracy.
Recent advances in visual tracking showed that deep Convolutional Neural Networks (CNN) trained for image classification can be strong feature extractors for discriminative trackers. However, due to the drastic difference between image classification
The recent trend in multiple object tracking (MOT) is heading towards leveraging deep learning to boost the tracking performance. However, it is not trivial to solve the data-association problem in an end-to-end fashion. In this paper, we propose a n
Pedestrians in videos have a wide range of appearances such as body poses, occlusions, and complex backgrounds, and there exists the proposal shift problem in pedestrian detection that causes the loss of body parts such as head and legs. To address i
In this paper, we study a discriminatively trained deep convolutional network for the task of visual tracking. Our tracker utilizes both motion and appearance features that are extracted from a pre-trained dual stream deep convolution network. We sho
Multiple object tracking and segmentation requires detecting, tracking, and segmenting objects belonging to a set of given classes. Most approaches only exploit the temporal dimension to address the association problem, while relying on single frame